Skip to main content

2020 | OriginalPaper | Buchkapitel

Mechanism Understanding of Sodium Penetration into Anthracite Cathodes: A Perspective from Diffusion Coefficients

verfasst von : Jiaqi Li, Hongliang Zhang, Jingkun Wang, Yunrui Wang

Erschienen in: Light Metals 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium penetration into carbon cathodes is an important cause of cell failure and efficiency loss, but it is a formidable task to unravel the detailed mechanism experimentally. Combined with MD simulation and DFT calculation, several diffusion coefficients were acquired to quantitatively analyze the behaviors of sodium penetration for the first time. Especially, the transport diffusion coefficient of sodium vapor in the large-scale realistic anthracite cathode model was calculated as 6.132 * 10−10 m2/s, which was in outstanding agreement with experimental results. Owing to lower diffusion energy barrier, sodium was found to migrate faster along the grain boundaries than the other two solid diffusion pathways. The striking difference of corresponding diffusion coefficients in the order of magnitude indicated that sodium may migrate predominantly by vapor migration, rather than through solid diffusion, at least in anthracite cathodes with high porosity. This fundamental research would contribute to the understanding of sodium penetration mechanism and the optimization of cathode industry in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thonstad, J., Fellner, P., Haarberg, G. M., Hives, J., Kvarde, H., & Sterten, A. (2001). Aluminium Electrolysis: Fundamentals of the Hall-Herault Process. Thonstad, J., Fellner, P., Haarberg, G. M., Hives, J., Kvarde, H., & Sterten, A. (2001). Aluminium Electrolysis: Fundamentals of the Hall-Herault Process.
2.
Zurück zum Zitat Brisson, P. Y., Soucy, G., Fafard, M., & Dionne, M. (2005). The effect of sodium on the carbon lining of the aluminum electrolysis cell—a review. Canadian metallurgical quarterly, 44(2), 265–280. Brisson, P. Y., Soucy, G., Fafard, M., & Dionne, M. (2005). The effect of sodium on the carbon lining of the aluminum electrolysis cell—a review. Canadian metallurgical quarterly44(2), 265–280.
3.
Zurück zum Zitat Dell, M. B. (2016). Reaction between carbon lining and hall bath. In Essential Readings in Light Metals (pp. 946–952). Springer, Cham. Dell, M. B. (2016). Reaction between carbon lining and hall bath. In Essential Readings in Light Metals (pp. 946–952). Springer, Cham.
4.
Zurück zum Zitat Øye, H. A., Thonstad, J., Dahlqvist, K., Handa, S., & De Nora, V. (1996). Reduction of sodium induced stresses in Hall–Heroult cells. Aluminium, 72(12), 918–992 Øye, H. A., Thonstad, J., Dahlqvist, K., Handa, S., & De Nora, V. (1996). Reduction of sodium induced stresses in Hall–Heroult cells. Aluminium, 72(12), 918–992
5.
Zurück zum Zitat Li, J., Wu, Y. Y., Lai, Y. Q., Liu, W., Wang, Z. G., Liu, J., & Liu, Y. X. (2008). Simulation of thermal and sodium expansion stress in aluminum reduction cells. Journal of Central South University of Technology, 15(2), 198–203. Li, J., Wu, Y. Y., Lai, Y. Q., Liu, W., Wang, Z. G., Liu, J., & Liu, Y. X. (2008). Simulation of thermal and sodium expansion stress in aluminum reduction cells. Journal of Central South University of Technology15(2), 198–203.
6.
Zurück zum Zitat Dewing, E. W. (1963). Reaction of sodium with nongraphitic carbon-reactions occurring in linings of aluminum reduction cells. Transactions of the Metallurgical Society of AIME, 227(6), 1328. Dewing, E. W. (1963). Reaction of sodium with nongraphitic carbon-reactions occurring in linings of aluminum reduction cells. Transactions of the Metallurgical Society of AIME227(6), 1328.
7.
Zurück zum Zitat Brisson, P. Y., Fafard, M., & Soucy, G. (2006). Investigation of electrolyte penetration in three carbon cathode materials for aluminum electrolysis cells. Canadian metallurgical quarterly, 45(4), 417–426. Brisson, P. Y., Fafard, M., & Soucy, G. (2006). Investigation of electrolyte penetration in three carbon cathode materials for aluminum electrolysis cells. Canadian metallurgical quarterly45(4), 417–426.
8.
Zurück zum Zitat Zhao, F. A. N. G., Zhang, K., LÜ, X. J., Li, L. B., Jun, Z. H. U., & Li, J. (2013). Alkali metals (K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis. Transactions of Nonferrous Metals Society of China, 23(6), 1847–1853. Zhao, F. A. N. G., Zhang, K., LÜ, X. J., Li, L. B., Jun, Z. H. U., & Li, J. (2013). Alkali metals (K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis. Transactions of Nonferrous Metals Society of China23(6), 1847–1853.
9.
Zurück zum Zitat Callister Jr, W. D., & Rethwisch, D. G. (2012). Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons. Callister Jr, W. D., & Rethwisch, D. G. (2012). Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons.
10.
Zurück zum Zitat Gao, Y., Xue, J., Zhu, J., Jiao, K., & Jiang, G. (2011). Characterization of Sodium and Fluoride Penetration into Carbon Cathodes by Image Analysis and SEM-EDS Techniques. In Light Metals 2011 (pp. 1103–1107). Springer, Cham. Gao, Y., Xue, J., Zhu, J., Jiao, K., & Jiang, G. (2011). Characterization of Sodium and Fluoride Penetration into Carbon Cathodes by Image Analysis and SEM-EDS Techniques. In Light Metals 2011 (pp. 1103–1107). Springer, Cham.
11.
Zurück zum Zitat Li, J., Fang, Z., Lai, Y. Q., Lü, X. J., & Tian, Z. L. (2009). Electrolysis expansion performance of semigraphitic cathode in [K 3 AlF 6/Na 3 AlF 6]-AlF 3-Al 2 O 3 bath system. Journal of Central South University of Technology, 16(3), 422–428. Li, J., Fang, Z., Lai, Y. Q., Lü, X. J., & Tian, Z. L. (2009). Electrolysis expansion performance of semigraphitic cathode in [K 3 AlF 6/Na 3 AlF 6]-AlF 3-Al 2 O 3 bath system. Journal of Central South University of Technology16(3), 422–428.
12.
Zurück zum Zitat Zolochevsky, A., Hop, J. G., Servant, G., Foosnaes, T., & Øye, H. A. (2003). Rapoport–Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling. Carbon, 41(3), 497–505. Zolochevsky, A., Hop, J. G., Servant, G., Foosnaes, T., & Øye, H. A. (2003). Rapoport–Samoilenko test for cathode carbon materials: I. Experimental results and constitutive modelling. Carbon41(3), 497–505.
13.
Zurück zum Zitat Feynman, R. P. (1960). Soil engineering in the Arctic. Engineering and Science, 23(8), 22–36. Feynman, R. P. (1960). Soil engineering in the Arctic. Engineering and Science23(8), 22–36.
14.
Zurück zum Zitat Huang, Y., Cannon, F. S., Guo, J., Watson, J. K., & Mathews, J. P. (2016). Atomistic modelling insight into the structure of lignite-based activated carbon and benzene sorption behavior. RSC Advances, 6(61), 56623–56637. Huang, Y., Cannon, F. S., Guo, J., Watson, J. K., & Mathews, J. P. (2016). Atomistic modelling insight into the structure of lignite-based activated carbon and benzene sorption behavior. RSC Advances, 6(61), 56623–56637.
15.
Zurück zum Zitat Brochard, L., Vandamme, M., Pellenq, R. J. M., & Fen-Chong, T. (2012). Adsorption-induced deformation of microporous materials: coal swelling induced by CO2–CH4 competitive adsorption. Langmuir, 28(5), 2659–2670. Brochard, L., Vandamme, M., Pellenq, R. J. M., & Fen-Chong, T. (2012). Adsorption-induced deformation of microporous materials: coal swelling induced by CO2–CH4 competitive adsorption. Langmuir28(5), 2659–2670.
16.
Zurück zum Zitat Sun, X., Wang, Z., & Fu, Y. Q. (2017). Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon, 116, 415–421. Sun, X., Wang, Z., & Fu, Y. Q. (2017). Adsorption and diffusion of sodium on graphene with grain boundaries. Carbon116, 415–421.
17.
Zurück zum Zitat Liang, Z., Fan, X., Zheng, W., & Singh, D. J. (2017). Adsorption and formation of small Na clusters on pristine and double-vacancy graphene for anodes of Na-ion batteries. ACS applied materials & interfaces, 9(20), 17076–1708. Liang, Z., Fan, X., Zheng, W., & Singh, D. J. (2017). Adsorption and formation of small Na clusters on pristine and double-vacancy graphene for anodes of Na-ion batteries. ACS applied materials & interfaces9(20), 17076–1708.
18.
Zurück zum Zitat Zhong, Q., Mao, Q., Zhang, L., Xiang, J., Xiao, J., & Mathews, J. P. (2018). Structural features of Qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation. Carbon, 129, 790–802. Zhong, Q., Mao, Q., Zhang, L., Xiang, J., Xiao, J., & Mathews, J. P. (2018). Structural features of Qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation. Carbon, 129, 790–802.
19.
Zurück zum Zitat Pappano, P. J., Mathews, J. P., & Schobert, H. H. (1999). Structural determinations of Pennsylvania anthracites. ACS Division of Fuel Chemistry, Preprints, 44(3), 567–568. Pappano, P. J., Mathews, J. P., & Schobert, H. H. (1999). Structural determinations of Pennsylvania anthracites. ACS Division of Fuel Chemistry, Preprints44(3), 567–568.
20.
Zurück zum Zitat Huang, L., Ning, Z., Wang, Q., Qi, R., Zeng, Y., Qin, H., … & Zhang, W. (2018). Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: Effect of kerogen maturity and moisture content. Fuel, 211, 159–172. Huang, L., Ning, Z., Wang, Q., Qi, R., Zeng, Y., Qin, H., … & Zhang, W. (2018). Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: Effect of kerogen maturity and moisture content. Fuel211, 159–172.
21.
Zurück zum Zitat Sui, H., & Yao, J. (2016). Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study. Journal of Natural Gas Science and Engineering, 31, 738–746. Sui, H., & Yao, J. (2016). Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study. Journal of Natural Gas Science and Engineering31, 738–746.
22.
Zurück zum Zitat Gasteiger, J., & Saller, H. (1985). Calculation of the charge distribution in conjugated systems by a quantification of the resonance concept. Angewandte Chemie International Edition in English, 24(8), 687–689. Gasteiger, J., & Saller, H. (1985). Calculation of the charge distribution in conjugated systems by a quantification of the resonance concept. Angewandte Chemie International Edition in English, 24(8), 687–689.
23.
Zurück zum Zitat Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577–8593. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577–8593.
24.
Zurück zum Zitat Zhang, J., Clennell, M. B., Dewhurst, D. N., & Liu, K. (2014). Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal. Fuel, 122, 186–197. Zhang, J., Clennell, M. B., Dewhurst, D. N., & Liu, K. (2014). Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal. Fuel122, 186–197.
25.
Zurück zum Zitat Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1), 014101. Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics126(1), 014101.
26.
Zurück zum Zitat Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics, 97(4), 2635–2643. Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics97(4), 2635–2643.
27.
Zurück zum Zitat Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 81(8), 3684–3690. Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of chemical physics81(8), 3684–3690.
28.
Zurück zum Zitat Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1), 24–34. Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics52(1), 24–34.
29.
Zurück zum Zitat Xu, Z., Lv, X., Chen, J., Jiang, L., Lai, Y., & Li, J. (2016). Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. Carbon, 107, 885–894. Xu, Z., Lv, X., Chen, J., Jiang, L., Lai, Y., & Li, J. (2016). Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. Carbon107, 885–894.
30.
Zurück zum Zitat Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical review letters, 100(13), 136406. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical review letters100(13), 136406.
31.
Zurück zum Zitat Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters77(18), 3865.
32.
Zurück zum Zitat Laasonen, K., Car, R., Lee, C., & Vanderbilt, D. (1991). Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Physical Review B, 43(8), 6796. Laasonen, K., Car, R., Lee, C., & Vanderbilt, D. (1991). Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Physical Review B43(8), 6796.
33.
Zurück zum Zitat Yang, S., Li, S., Tang, S., Dong, W., Sun, W., Shen, D., & Wang, M. (2016). Sodium adsorption and intercalation in bilayer graphene from density functional theory calculations. Theoretical Chemistry Accounts, 135(7), 164. Yang, S., Li, S., Tang, S., Dong, W., Sun, W., Shen, D., & Wang, M. (2016). Sodium adsorption and intercalation in bilayer graphene from density functional theory calculations. Theoretical Chemistry Accounts135(7), 164.
34.
Zurück zum Zitat Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., & Andzelm, J. (2003). A generalized synchronous transit method for transition state location. Computational materials science, 28(2), 250–258. Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., & Andzelm, J. (2003). A generalized synchronous transit method for transition state location. Computational materials science28(2), 250–258.
35.
Zurück zum Zitat Joncourt, L., Mermoux, M., Touzain, P. H., Bonnetain, L., Dumas, D., & Allard, B. (1996). Sodium reactivity with carbons. Journal of Physics and Chemistry of Solids, 57(6–8), 877–882. Joncourt, L., Mermoux, M., Touzain, P. H., Bonnetain, L., Dumas, D., & Allard, B. (1996). Sodium reactivity with carbons. Journal of Physics and Chemistry of Solids57(6–8), 877–882.
36.
Zurück zum Zitat Atria, J. V., Rusinko, F., & Schobert, H. H. (2002). Structural Ordering of Pennsylvania Anthracites on Heat Treatment to 2000–2900° C. Energy & fuels, 16(6), 1343–1347. Atria, J. V., Rusinko, F., & Schobert, H. H. (2002). Structural Ordering of Pennsylvania Anthracites on Heat Treatment to 2000–2900° C. Energy & fuels16(6), 1343–1347.
37.
Zurück zum Zitat Sorlie, M., & Oye, H. A. (1994). Cathodes in Aluminium Electrolysis, 2nd Edn, p. 185. Aluminium-Verlag, Dusseldorf. Sorlie, M., & Oye, H. A. (1994). Cathodes in Aluminium Electrolysis, 2nd Edn, p. 185. Aluminium-Verlag, Dusseldorf.
38.
Zurück zum Zitat Jobic, H., Skoulidas, A. I., & Sholl, D. S. (2004). Determination of concentration dependent transport diffusivity of CF4 in silicalite by neutron scattering experiments and molecular dynamics. The Journal of Physical Chemistry B, 108(30), 10613–10616. Jobic, H., Skoulidas, A. I., & Sholl, D. S. (2004). Determination of concentration dependent transport diffusivity of CF4 in silicalite by neutron scattering experiments and molecular dynamics. The Journal of Physical Chemistry B, 108(30), 10613–10616.
39.
Zurück zum Zitat Zhao, Y., Feng, Y., & Zhang, X. (2016). Molecular simulation of CO2/CH4 self-and transport diffusion coefficients in coal. Fuel, 165, 19–27. Zhao, Y., Feng, Y., & Zhang, X. (2016). Molecular simulation of CO2/CH4 self-and transport diffusion coefficients in coal. Fuel, 165, 19–27.
40.
Zurück zum Zitat Skoulidas, A. I., & Sholl, D. S. (2003). Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. The Journal of Physical Chemistry A, 107(47), 10132–10141. Skoulidas, A. I., & Sholl, D. S. (2003). Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. The Journal of Physical Chemistry A, 107(47), 10132–10141.
41.
Zurück zum Zitat Ziambaras, E., Kleis, J., Schröder, E., & Hyldgaard, P. (2007). Potassium intercalation in graphite: A van der Waals density-functional study. Physical Review B, 76(15), 155425. Ziambaras, E., Kleis, J., Schröder, E., & Hyldgaard, P. (2007). Potassium intercalation in graphite: A van der Waals density-functional study. Physical Review B76(15), 155425.
42.
Zurück zum Zitat Luo, W., Wan, J., Ozdemir, B, Bao, W., Chen, Y., Dai, J., … & Hu, L. (2015). Potassium ion batteries with graphitic materials. Nano letters, 15(11), 7671–7677. Luo, W., Wan, J., Ozdemir, B, Bao, W., Chen, Y., Dai, J., … & Hu, L. (2015). Potassium ion batteries with graphitic materials. Nano letters15(11), 7671–7677.
Metadaten
Titel
Mechanism Understanding of Sodium Penetration into Anthracite Cathodes: A Perspective from Diffusion Coefficients
verfasst von
Jiaqi Li
Hongliang Zhang
Jingkun Wang
Yunrui Wang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_178

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.