Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.01.2015 | Original Paper | Ausgabe 6/2015

Rock Mechanics and Rock Engineering 6/2015

Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities

Zeitschrift:
Rock Mechanics and Rock Engineering > Ausgabe 6/2015
Autoren:
Hao Xu, Chloé Arson

Abstract

We used the differential stress-induced damage (DSID) model to predict anisotropic crack propagation under tensile and shear stress. The damage variable is similar to a crack density tensor. The damage function and the damage potential are expressed as functions of the energy release rate, defined as the thermodynamic force that is work-conjugate to damage. Contrary to the previous damage models, flow rules are obtained by deriving dissipation functions by the energy release rate, and thermodynamic consistency is ensured. The damage criterion is adapted from the Drucker–Prager yield function. Simulations of biaxial stress tests showed that: (1) three-dimensional states of damage can be obtained for three-dimensional states of stress; (2) no damage propagates under isotropic compression; (3) crack planes propagate in the direction parallel to major compression stress; (4) damage propagation hardens the material; (5) stiffness and deformation anisotropy result from the anisotropy of damage. There is no one-to-one relationship between stress and damage. We demonstrated the effect of the loading sequence in a two-step simulation (a shear loading phase and a compression loading phase): the current state of stress and damage can be used to track the effect of stress history on damage rotation. We finally conducted a sensitivity analysis with the finite element method, to explore the stress conditions in which damage is expected to rotate around a circular cavity subject to pressurization or depressurization. Simulation results showed that: (1) before damage initiation, the DSID model matches the analytical solution of stress distribution obtained with the theory of elasticity; (2) the DSID model can predict the extent of the tensile damage zone at the crown, and that of the compressive damage zone at the sidewalls; (3) damage generated during a vertical far-field compression followed by a depressurization of the cavity is more intense than that generated during a depressurization of the cavity followed by a vertical far-field compression.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2015

Rock Mechanics and Rock Engineering 6/2015 Zur Ausgabe