Skip to main content
Erschienen in: Journal of Materials Science 15/2019

01.05.2019 | Review

Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy

verfasst von: Zachary D. Hood, Miaofang Chi

Erschienen in: Journal of Materials Science | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid electrolytes (SEs) have gained increased attention for their promise to enable higher volumetric energy density and enhanced safety required for future battery systems. SEs are not only a key constituent in all-solid-state batteries, but also important “protectors” of Li metal anodes in next-generation battery configurations, such as Li–air, Li–S, and redox flow batteries. The impedance at interfaces associated with SEs, e.g., internal grain/phase boundaries and their interfacial stability with electrodes, represents two key factors limiting the performance of SEs, yet analyzing these interfaces experimentally at the nano/atomic scale is generally challenging. A mechanistic understanding of the possible instability at interfaces and propagation of interfacial resistance will pave the way to the design of high-performance SE-based batteries. In this review, we briefly introduce the fundamentals of SEs and challenges associated with their interfaces. Next, we discuss experimental techniques that allow for atomic-to-microscale understanding of ion transport and stability in SEs and at their interfaces, specifically highlighting the applications of state-of-the-art and emerging ex situ and in situ transmission electron microscopy (TEM) and scanning TEM (STEM). Representative examples from the current literature that exemplify recent fundamental insights gained from these S/TEM techniques are highlighted. Applicable strategies to improve ion conduction and interfaces in SE-based batteries are also discussed. This review concludes by highlighting opportunities for future research that will significantly promote the fundamental understanding of SEs, specifically further developments in S/TEM techniques that will bring new insights into the design of high-performance interfaces for future electrical energy storage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dudney NJ, West WC, Nanda J (2016) Handbook of solid state batteries. World Scientific, Singapore Dudney NJ, West WC, Nanda J (2016) Handbook of solid state batteries. World Scientific, Singapore
2.
Zurück zum Zitat Hagenmuller P, Van Gool W (2015) Solid electrolytes: general principles, characterization, materials, applications. Elsevier, Amsterdam Hagenmuller P, Van Gool W (2015) Solid electrolytes: general principles, characterization, materials, applications. Elsevier, Amsterdam
3.
Zurück zum Zitat Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540 Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540
4.
Zurück zum Zitat Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279 Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279
5.
Zurück zum Zitat Barghamadi M, Best AS, Bhatt AI, Hollenkamp AF, Musameh M, Rees RJ, Rüther T (2014) Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ Sci 7(12):3902–3920 Barghamadi M, Best AS, Bhatt AI, Hollenkamp AF, Musameh M, Rees RJ, Rüther T (2014) Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ Sci 7(12):3902–3920
6.
Zurück zum Zitat Berbano SS, Mirsaneh M, Lanagan MT, Randall CA (2013) Lithium thiophosphate glasses and glass-ceramics as solid electrolytes: processing, microstructure, and properties. Int J Appl Glass Sci 4(4):414–425 Berbano SS, Mirsaneh M, Lanagan MT, Randall CA (2013) Lithium thiophosphate glasses and glass-ceramics as solid electrolytes: processing, microstructure, and properties. Int J Appl Glass Sci 4(4):414–425
7.
Zurück zum Zitat Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135(3):975–978 Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135(3):975–978
8.
Zurück zum Zitat Hood ZD, Wang H, Pandian AS, Peng R, Gilroy KD, Chi M, Liang C, Xia Y (2018) Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks. Adv Energy Mater 8:1800014 Hood ZD, Wang H, Pandian AS, Peng R, Gilroy KD, Chi M, Liang C, Xia Y (2018) Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks. Adv Energy Mater 8:1800014
9.
Zurück zum Zitat Wang H, Hood ZD, Xia Y, Liang C (2016) Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A 4(21):8091–8096 Wang H, Hood ZD, Xia Y, Liang C (2016) Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A 4(21):8091–8096
10.
Zurück zum Zitat Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion 178(15):1163–1167 Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion 178(15):1163–1167
11.
Zurück zum Zitat Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10(9):682–686 Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10(9):682–686
12.
Zurück zum Zitat Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6(12):3548–3552 Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6(12):3548–3552
13.
Zurück zum Zitat Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631 Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631
14.
Zurück zum Zitat Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Physica Status Solidi (a) 208(8):1804–1807 Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Physica Status Solidi (a) 208(8):1804–1807
15.
Zurück zum Zitat Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J (2012) High conductivity of dense tetragonal Li7La3Zr2O12. J Power Sources 208:193–196 Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J (2012) High conductivity of dense tetragonal Li7La3Zr2O12. J Power Sources 208:193–196
16.
Zurück zum Zitat Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32 Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32
17.
Zurück zum Zitat Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Gy A (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027 Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Gy A (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027
18.
Zurück zum Zitat Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693 Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693
19.
Zurück zum Zitat Bohnke O, Bohnke C, Fourquet J (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion 91(1–2):21–31 Bohnke O, Bohnke C, Fourquet J (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion 91(1–2):21–31
20.
Zurück zum Zitat Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15(21):3974–3990 Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15(21):3974–3990
21.
Zurück zum Zitat Boukamp B, Huggins R (1978) Fast ionic conductivity in lithium nitride. Mater Res Bull 13(1):23–32 Boukamp B, Huggins R (1978) Fast ionic conductivity in lithium nitride. Mater Res Bull 13(1):23–32
22.
Zurück zum Zitat Whittingham MS, Huggins RA (1971) Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys 54(1):414–416 Whittingham MS, Huggins RA (1971) Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys 54(1):414–416
23.
Zurück zum Zitat Li J, Ma C, Chi M, Liang C, Dudney NJ (2015) Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 5(4):1401408 Li J, Ma C, Chi M, Liang C, Dudney NJ (2015) Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 5(4):1401408
24.
Zurück zum Zitat Taheri ML, Stach EA, Arslan I, Crozier PA, Kabius BC, LaGrange T, Minor AM, Takeda S, Tanase M, Wagner JB (2016) Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170:86–95 Taheri ML, Stach EA, Arslan I, Crozier PA, Kabius BC, LaGrange T, Minor AM, Takeda S, Tanase M, Wagner JB (2016) Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170:86–95
25.
Zurück zum Zitat Ma C, Chi M (2016) Novel solid electrolytes for Li-ion batteries: a perspective from electron microscopy studies. Front Energy Res 4:23 Ma C, Chi M (2016) Novel solid electrolytes for Li-ion batteries: a perspective from electron microscopy studies. Front Energy Res 4:23
26.
Zurück zum Zitat Yuan Y, Amine K, Lu J, Shahbazian-Yassar R (2017) Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat Commun 8:15806 Yuan Y, Amine K, Lu J, Shahbazian-Yassar R (2017) Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat Commun 8:15806
27.
Zurück zum Zitat Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162(14):A2387–A2392 Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162(14):A2387–A2392
28.
Zurück zum Zitat Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727 Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727
29.
Zurück zum Zitat Wu B, Wang S, Evans WJ IV, Deng DZ, Yang J, Xiao J (2016) Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4(40):15266–15280 Wu B, Wang S, Evans WJ IV, Deng DZ, Yang J, Xiao J (2016) Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4(40):15266–15280
30.
Zurück zum Zitat Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162 Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162
31.
Zurück zum Zitat Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3(3):936–958 Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3(3):936–958
32.
Zurück zum Zitat Park JH, Suh K, Rohman MR, Hwang W, Yoon M, Kim K (2015) Solid lithium electrolytes based on an organic molecular porous solid. Chem Commun 51(45):9313–9316 Park JH, Suh K, Rohman MR, Hwang W, Yoon M, Kim K (2015) Solid lithium electrolytes based on an organic molecular porous solid. Chem Commun 51(45):9313–9316
33.
Zurück zum Zitat Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623 Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623
34.
Zurück zum Zitat Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259 Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259
35.
Zurück zum Zitat Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386 Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386
36.
Zurück zum Zitat Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516 Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516
37.
Zurück zum Zitat Bates J, Dudney N, Neudecker B, Ueda A, Evans C (2000) Thin-film lithium and lithium–ion batteries. Solid State Ion 135(1):33–45 Bates J, Dudney N, Neudecker B, Ueda A, Evans C (2000) Thin-film lithium and lithium–ion batteries. Solid State Ion 135(1):33–45
38.
Zurück zum Zitat Dudney NJ (2005) Solid-state thin-film rechargeable batteries. Mater Sci Eng B 116(3):245–249 Dudney NJ (2005) Solid-state thin-film rechargeable batteries. Mater Sci Eng B 116(3):245–249
39.
Zurück zum Zitat Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium − air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203 Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium − air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203
40.
Zurück zum Zitat Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588 Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588
41.
Zurück zum Zitat Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuat B Chem 23(2–3):135–156 Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuat B Chem 23(2–3):135–156
42.
Zurück zum Zitat Struzik M, Garbayo I, Pfenninger R, Rupp JL (2018) A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater 30:1804098 Struzik M, Garbayo I, Pfenninger R, Rupp JL (2018) A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater 30:1804098
43.
Zurück zum Zitat Jensen J, Krebs FC (2014) From the bottom up—flexible solid state electrochromic devices. Adv Mater 26(42):7231–7234 Jensen J, Krebs FC (2014) From the bottom up—flexible solid state electrochromic devices. Adv Mater 26(42):7231–7234
44.
Zurück zum Zitat Zhang Z, Shao Y, Lotsch B, Hu Y-S, Li H, Janek J, Nazar LF, Nan C-W, Maier J, Armand M, Chen L (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11(8):1945–1976 Zhang Z, Shao Y, Lotsch B, Hu Y-S, Li H, Janek J, Nazar LF, Nan C-W, Maier J, Armand M, Chen L (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11(8):1945–1976
45.
Zurück zum Zitat Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141 Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141
46.
Zurück zum Zitat Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2015) Interface stability in solid-state batteries. Chem Mater 28(1):266–273 Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2015) Interface stability in solid-state batteries. Chem Mater 28(1):266–273
47.
Zurück zum Zitat Luntz AC, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6(22):4599–4604 Luntz AC, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6(22):4599–4604
48.
Zurück zum Zitat Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693 Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693
49.
Zurück zum Zitat Hood ZD, Kates C, Kirkham M, Adhikari S, Liang C, Holzwarth N (2016) Structural and electrolyte properties of Li4P2S6. Solid State Ion 284:61–70 Hood ZD, Kates C, Kirkham M, Adhikari S, Liang C, Holzwarth N (2016) Structural and electrolyte properties of Li4P2S6. Solid State Ion 284:61–70
50.
Zurück zum Zitat Lepley N, Holzwarth N (2015) Modeling interfaces between solids: application to Li battery materials. Phys Rev B 92(21):214201 Lepley N, Holzwarth N (2015) Modeling interfaces between solids: application to Li battery materials. Phys Rev B 92(21):214201
51.
Zurück zum Zitat Liu X, Chen Y, Hood ZD, Ma C, Yu S, Sharafi A, Wang H, An K, Sakamoto J, Siegel DJ (2019) Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy Environ Sci 12:945–951 Liu X, Chen Y, Hood ZD, Ma C, Yu S, Sharafi A, Wang H, An K, Sakamoto J, Siegel DJ (2019) Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy Environ Sci 12:945–951
52.
Zurück zum Zitat Zheng Z, Wu H-H, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang M-S, Peng D-L (2018) Fabrication and understanding of Cu3Si–Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10(47):22203–22214 Zheng Z, Wu H-H, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang M-S, Peng D-L (2018) Fabrication and understanding of Cu3Si–Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10(47):22203–22214
53.
Zurück zum Zitat Jurng S, Brown ZL, Kim J, Lucht BL (2018) Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci 11(9):2600–2608 Jurng S, Brown ZL, Kim J, Lucht BL (2018) Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci 11(9):2600–2608
54.
Zurück zum Zitat Liu X, Gu L (2018) Advanced transmission electron microscopy for electrode and solid-electrolyte materials in lithium-ion batteries. Small Methods 2(8):1800006 Liu X, Gu L (2018) Advanced transmission electron microscopy for electrode and solid-electrolyte materials in lithium-ion batteries. Small Methods 2(8):1800006
55.
Zurück zum Zitat Gao X, Ding Y, Qu Q, Liu G, Battaglia VS, Zheng H (2018) Optimizing solid electrolyte interphase on graphite anode by adjusting the electrolyte solution structure with ionic liquid. Electrochim Acta 260:640–647 Gao X, Ding Y, Qu Q, Liu G, Battaglia VS, Zheng H (2018) Optimizing solid electrolyte interphase on graphite anode by adjusting the electrolyte solution structure with ionic liquid. Electrochim Acta 260:640–647
56.
Zurück zum Zitat Harrison KL, Zavadil KR, Hahn NT, Meng X, Elam JW, Leenheer A, Zhang J-G, Jungjohann KL (2017) Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11(11):11194–11205 Harrison KL, Zavadil KR, Hahn NT, Meng X, Elam JW, Leenheer A, Zhang J-G, Jungjohann KL (2017) Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11(11):11194–11205
57.
Zurück zum Zitat Zeng Z, Zheng W, Zheng H (2017) Visualization of colloidal nanocrystal formation and electrode–electrolyte interfaces in liquids using TEM. Acc Chem Res 50(8):1808–1817 Zeng Z, Zheng W, Zheng H (2017) Visualization of colloidal nanocrystal formation and electrode–electrolyte interfaces in liquids using TEM. Acc Chem Res 50(8):1808–1817
58.
Zurück zum Zitat Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem 128(40):12726–12730 Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem 128(40):12726–12730
59.
Zurück zum Zitat Gobet M, Greenbaum S, Sahu G, Liang C (2014) Structural evolution and Li dynamics in nanophase Li3PS4 by solid-state and pulsed-field gradient NMR. Chem Mater 26(11):3558–3564 Gobet M, Greenbaum S, Sahu G, Liang C (2014) Structural evolution and Li dynamics in nanophase Li3PS4 by solid-state and pulsed-field gradient NMR. Chem Mater 26(11):3558–3564
60.
Zurück zum Zitat Blanc F, Leskes M, Grey CP (2013) In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc Chem Res 46(9):1952–1963 Blanc F, Leskes M, Grey CP (2013) In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc Chem Res 46(9):1952–1963
61.
Zurück zum Zitat Pecher O, Carretero-González J, Griffith KJ, Grey CP (2017) Materials’ methods: NMR in battery research. Chem Mater 29(1):213–242 Pecher O, Carretero-González J, Griffith KJ, Grey CP (2017) Materials’ methods: NMR in battery research. Chem Mater 29(1):213–242
62.
Zurück zum Zitat Black J, Strelcov E, Balke N, Kalinin SV (2014) Electrochemistry at the nanoscale: the force dimension. Electrochem Soc Interface 23(2):53–59 Black J, Strelcov E, Balke N, Kalinin SV (2014) Electrochemistry at the nanoscale: the force dimension. Electrochem Soc Interface 23(2):53–59
63.
Zurück zum Zitat Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov IN, Dudney NJ, Kalinin SV (2010) Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett 10(9):3420–3425 Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov IN, Dudney NJ, Kalinin SV (2010) Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett 10(9):3420–3425
64.
Zurück zum Zitat Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045–5050 Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045–5050
65.
Zurück zum Zitat Bron P, Roling B, Dehnen S (2017) Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J Power Sources 352:127–134 Bron P, Roling B, Dehnen S (2017) Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J Power Sources 352:127–134
66.
Zurück zum Zitat Basappa RH, Ito T, Yamada H (2017) Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J Electrochem Soc 164(4):A666–A671 Basappa RH, Ito T, Yamada H (2017) Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J Electrochem Soc 164(4):A666–A671
67.
Zurück zum Zitat Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137(4):1384–1387 Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137(4):1384–1387
68.
Zurück zum Zitat Balke N, Jesse S, Kim Y, Adamczyk L, Ivanov IN, Dudney NJ, Kalinin SV (2010) Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4(12):7349–7357 Balke N, Jesse S, Kim Y, Adamczyk L, Ivanov IN, Dudney NJ, Kalinin SV (2010) Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4(12):7349–7357
69.
Zurück zum Zitat Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196(15):6456–6464 Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196(15):6456–6464
70.
Zurück zum Zitat Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem Commun 14(1):25–28 Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem Commun 14(1):25–28
71.
Zurück zum Zitat Gellert M, Gries KI, Yada C, Rosciano F, Volz K, Roling B (2012) Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. J Phys Chem C 116(43):22675–22678 Gellert M, Gries KI, Yada C, Rosciano F, Volz K, Roling B (2012) Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. J Phys Chem C 116(43):22675–22678
72.
Zurück zum Zitat Yamada H, Tsunoe D, Shiraishi S, Isomichi G (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119(10):5412–5419 Yamada H, Tsunoe D, Shiraishi S, Isomichi G (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119(10):5412–5419
73.
Zurück zum Zitat Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ion 285:41–46 Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ion 285:41–46
74.
Zurück zum Zitat Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638–1642 Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638–1642
75.
Zurück zum Zitat Catti M (2007) First-principles modeling of lithium ordering in the LLTO (LixLa2/3−x/3TiO3) superionic conductor. Chem Mater 19(16):3963–3972 Catti M (2007) First-principles modeling of lithium ordering in the LLTO (LixLa2/3−x/3TiO3) superionic conductor. Chem Mater 19(16):3963–3972
76.
Zurück zum Zitat Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T (2006) Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites. Solid State Ion 177(35):3037–3044 Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T (2006) Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites. Solid State Ion 177(35):3037–3044
77.
Zurück zum Zitat Alexander KC, Ganesh P, Chi M, Kent P, Sumpter BG (2016) Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate. MRS Commun 6(4):455–463 Alexander KC, Ganesh P, Chi M, Kent P, Sumpter BG (2016) Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate. MRS Commun 6(4):455–463
78.
Zurück zum Zitat Qian D, Ma C, More KL, Meng YS, Chi M (2015) Advanced analytical electron microscopy for lithium-ion batteries. NPG Asia Mater 7(6):e193 Qian D, Ma C, More KL, Meng YS, Chi M (2015) Advanced analytical electron microscopy for lithium-ion batteries. NPG Asia Mater 7(6):e193
79.
Zurück zum Zitat Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 7(3):2073–2081 Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 7(3):2073–2081
80.
Zurück zum Zitat David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J (2015) Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 98(4):1209–1214 David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J (2015) Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 98(4):1209–1214
81.
Zurück zum Zitat Tenhaeff WE, Rangasamy E, Wang Y, Sokolov AP, Wolfenstine J, Sakamoto J, Dudney NJ (2014) Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1(2):375–378 Tenhaeff WE, Rangasamy E, Wang Y, Sokolov AP, Wolfenstine J, Sakamoto J, Dudney NJ (2014) Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1(2):375–378
82.
Zurück zum Zitat Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411 Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411
83.
Zurück zum Zitat Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2015) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28(1):197–206 Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2015) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28(1):197–206
84.
Zurück zum Zitat Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS (2018) Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte. Chem Mater 30(9):3019–3027 Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS (2018) Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte. Chem Mater 30(9):3019–3027
85.
Zurück zum Zitat Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi LB, Browning ND, Zhang JG, Graff GL (2015) High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater 5(16):1402290 Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi LB, Browning ND, Zhang JG, Graff GL (2015) High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater 5(16):1402290
86.
Zurück zum Zitat Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537 Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537
87.
Zurück zum Zitat Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206 Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206
88.
Zurück zum Zitat Alvarado J, Schroeder MA, Pollard TP, Wang X, Lee JZ, Zhang M, Wynn T, Ding M, Borodin OA, Meng S (2019) Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 12:780–794 Alvarado J, Schroeder MA, Pollard TP, Wang X, Lee JZ, Zhang M, Wynn T, Ding M, Borodin OA, Meng S (2019) Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 12:780–794
89.
Zurück zum Zitat Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770 Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770
90.
Zurück zum Zitat Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CA, Hirayama T, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources 196(2):764–767 Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CA, Hirayama T, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources 196(2):764–767
91.
Zurück zum Zitat Nam YJ, Cho S-J, Oh DY, Lim J-M, Kim SY, Song JH, Lee Y-G, Lee S-Y, Jung YS (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15(5):3317–3323 Nam YJ, Cho S-J, Oh DY, Lim J-M, Kim SY, Song JH, Lee Y-G, Lee S-Y, Jung YS (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15(5):3317–3323
92.
Zurück zum Zitat Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202:332–335 Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202:332–335
93.
Zurück zum Zitat Takada K, Ohta N, Zhang L, Xu X, Hang BT, Ohnishi T, Osada M, Sasaki T (2012) Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion 225:594–597 Takada K, Ohta N, Zhang L, Xu X, Hang BT, Ohnishi T, Osada M, Sasaki T (2012) Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion 225:594–597
94.
Zurück zum Zitat Pan J, Cheng Y-T, Qi Y (2015) General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys Rev B 91(13):134116 Pan J, Cheng Y-T, Qi Y (2015) General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys Rev B 91(13):134116
95.
Zurück zum Zitat Han F, Zhu Y, He X, Mo Y, Wang C (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6(8):1501590 Han F, Zhu Y, He X, Mo Y, Wang C (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6(8):1501590
96.
Zurück zum Zitat Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4(2):591–599 Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4(2):591–599
97.
Zurück zum Zitat Augustyn V, McDowell MT, Vojvodic A (2018) Toward an atomistic understanding of solid-state electrochemical interfaces for energy storage. Joule 2(11):2189–2193 Augustyn V, McDowell MT, Vojvodic A (2018) Toward an atomistic understanding of solid-state electrochemical interfaces for energy storage. Joule 2(11):2189–2193
98.
Zurück zum Zitat Yu X, Bates J, Jellison G, Hart F (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532 Yu X, Bates J, Jellison G, Hart F (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532
99.
Zurück zum Zitat Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M (2016) Interfacial stability of li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036 Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M (2016) Interfacial stability of li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036
100.
Zurück zum Zitat Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion 278:98–105 Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion 278:98–105
101.
Zurück zum Zitat Zarabian M, Bartolini M, Pereira-Almao P, Thangadurai V (2017) X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li–La–Zr–O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J Electrochem Soc 164(6):A1133–A1139 Zarabian M, Bartolini M, Pereira-Almao P, Thangadurai V (2017) X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li–La–Zr–O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J Electrochem Soc 164(6):A1133–A1139
102.
Zurück zum Zitat Schwöbel A, Hausbrand R, Jaegermann W (2015) Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion 273:51–54 Schwöbel A, Hausbrand R, Jaegermann W (2015) Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion 273:51–54
103.
Zurück zum Zitat Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781 Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781
104.
Zurück zum Zitat Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20(25):5167–5173 Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20(25):5167–5173
106.
Zurück zum Zitat Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Jr J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407 Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Jr J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407
107.
Zurück zum Zitat Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ion 300:78–85 Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ion 300:78–85
108.
Zurück zum Zitat Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J, Adelhelm P, Jr J (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117(41):21064–21074 Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J, Adelhelm P, Jr J (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117(41):21064–21074
109.
Zurück zum Zitat Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB (2016) Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci 113(47):13313–13317 Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB (2016) Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci 113(47):13313–13317
110.
Zurück zum Zitat Wood KN, Steirer KX, Hafner SE, Ban C, Santhanagopalan S, Lee S-H, Teeter G (2018) Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S–P2S5 solid-state electrolytes. Nat Commun 9(1):2490 Wood KN, Steirer KX, Hafner SE, Ban C, Santhanagopalan S, Lee S-H, Teeter G (2018) Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S–P2S5 solid-state electrolytes. Nat Commun 9(1):2490
111.
Zurück zum Zitat Dudney NJ (2017) Evolution of the lithium morphology from cycling of thin film solid state batteries. J Electroceram 28(2–4):222–229 Dudney NJ (2017) Evolution of the lithium morphology from cycling of thin film solid state batteries. J Electroceram 28(2–4):222–229
112.
Zurück zum Zitat Sakuda A, Hayashi A, Tatsumisago M (2009) Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956 Sakuda A, Hayashi A, Tatsumisago M (2009) Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956
113.
Zurück zum Zitat Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4:3253–3266 Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4:3253–3266
114.
Zurück zum Zitat West WC, Hood ZD, Adhikari SP, Liang C, Lachgar A, Motoyama M, Iriyama Y (2016) Reduction of charge-transfer resistance at the solid electrolyte–electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J Power Sources 312:116–122 West WC, Hood ZD, Adhikari SP, Liang C, Lachgar A, Motoyama M, Iriyama Y (2016) Reduction of charge-transfer resistance at the solid electrolyte–electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J Power Sources 312:116–122
115.
Zurück zum Zitat Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18(17):2226–2229 Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18(17):2226–2229
116.
Zurück zum Zitat Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9(7):1486–1490 Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9(7):1486–1490
117.
Zurück zum Zitat Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T (2008) Interfacial modification for high-power solid-state lithium batteries. Solid State Ion 179(27):1333–1337 Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T (2008) Interfacial modification for high-power solid-state lithium batteries. Solid State Ion 179(27):1333–1337
118.
Zurück zum Zitat Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2011) Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ion 192(1):304–307 Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2011) Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ion 192(1):304–307
119.
Zurück zum Zitat Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260:292–298 Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260:292–298
120.
Zurück zum Zitat Meng X, Yang XQ, Sun X (2012) Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater 24(27):3589–3615 Meng X, Yang XQ, Sun X (2012) Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater 24(27):3589–3615
121.
Zurück zum Zitat Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin HL, He K, Li J, Dudney NJ, Meng YS (2016) In situ STEM/EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett 16(6):3760–3767 Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin HL, He K, Li J, Dudney NJ, Meng YS (2016) In situ STEM/EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett 16(6):3760–3767
122.
Zurück zum Zitat Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y (2014) Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater 26(14):4248–4255 Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y (2014) Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater 26(14):4248–4255
123.
Zurück zum Zitat Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte. J Electrochem Soc 157(4):A407–A411 Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte. J Electrochem Soc 157(4):A407–A411
124.
Zurück zum Zitat Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J (2018) Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium ion battery. ACS Appl Mater Interfaces 10(26):22226–22236 Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J (2018) Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium ion battery. ACS Appl Mater Interfaces 10(26):22226–22236
125.
Zurück zum Zitat Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2010) LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries. Electrochem Solid-State Lett 13(6):A73–A75 Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2010) LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries. Electrochem Solid-State Lett 13(6):A73–A75
126.
Zurück zum Zitat Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J (2017) (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A 5(20):9929–9936 Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J (2017) (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A 5(20):9929–9936
127.
Zurück zum Zitat Nomura Y, Yamamoto K, Hirayama T, Ohkawa M, Igaki E, Hojo N, Saitoh K (2018) Quantitative operando visualization of electrochemical reactions and Li ions in all-solid-state batteries by STEM-EELS with hyperspectral image analyses. Nano Lett 18(9):5892–5898 Nomura Y, Yamamoto K, Hirayama T, Ohkawa M, Igaki E, Hojo N, Saitoh K (2018) Quantitative operando visualization of electrochemical reactions and Li ions in all-solid-state batteries by STEM-EELS with hyperspectral image analyses. Nano Lett 18(9):5892–5898
128.
Zurück zum Zitat Yamamoto K, Iriyama Y, Hirayama T (2017) Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy 66(1):50–61 Yamamoto K, Iriyama Y, Hirayama T (2017) Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy 66(1):50–61
129.
Zurück zum Zitat Linck M, Freitag B, Kujawa S, Lehmann M, Niermann T (2012) State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116:13–23 Linck M, Freitag B, Kujawa S, Lehmann M, Niermann T (2012) State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116:13–23
130.
Zurück zum Zitat Cooper D, Pan C-T, Haigh S (2014) Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography. J Appl Phys 115(23):233709 Cooper D, Pan C-T, Haigh S (2014) Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography. J Appl Phys 115(23):233709
131.
Zurück zum Zitat Winkler F, Tavabi AH, Barthel J, Duchamp M, Yucelen E, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2017) Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2. Ultramicroscopy 178:38–47 Winkler F, Tavabi AH, Barthel J, Duchamp M, Yucelen E, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2017) Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2. Ultramicroscopy 178:38–47
132.
Zurück zum Zitat Winkler F, Barthel J, Tavabi AH, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2018) Absolute scale quantitative off-axis electron holography at atomic resolution. Phys Rev Lett 120(15):156101 Winkler F, Barthel J, Tavabi AH, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2018) Absolute scale quantitative off-axis electron holography at atomic resolution. Phys Rev Lett 120(15):156101
133.
Zurück zum Zitat Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y (2011) Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. J Mater Chem 21(27):10051–10060 Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y (2011) Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. J Mater Chem 21(27):10051–10060
134.
Zurück zum Zitat Sang L, Haasch RT, Gewirth AA, Nuzzo RG (2017) Evolution at the solid electrolyte/Au electrode interface during lithium deposition and stripping. Chem Mater 29(7):3029–3037 Sang L, Haasch RT, Gewirth AA, Nuzzo RG (2017) Evolution at the solid electrolyte/Au electrode interface during lithium deposition and stripping. Chem Mater 29(7):3029–3037
135.
Zurück zum Zitat Chen Y, Rangasamy E, Liang C, An K (2015) Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets. Chem Mater 27(16):5491–5494 Chen Y, Rangasamy E, Liang C, An K (2015) Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets. Chem Mater 27(16):5491–5494
136.
Zurück zum Zitat Kawaura H, Harada M, Kondo Y, Kondo H, Suganuma Y, Takahashi N, Sugiyama J, Seno Y, Yamada NL (2016) Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry. ACS Appl Mater Interfaces 8(15):9540–9544 Kawaura H, Harada M, Kondo Y, Kondo H, Suganuma Y, Takahashi N, Sugiyama J, Seno Y, Yamada NL (2016) Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry. ACS Appl Mater Interfaces 8(15):9540–9544
137.
Zurück zum Zitat Ma C, Cheng Y, Chen K, Li J, Sumpter BG, Nan CW, More KL, Dudney NJ, Chi M (2016) Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries. Adv Energy Mater 6(11):1600053 Ma C, Cheng Y, Chen K, Li J, Sumpter BG, Nan CW, More KL, Dudney NJ, Chi M (2016) Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries. Adv Energy Mater 6(11):1600053
138.
Zurück zum Zitat Billinge SJ, Kanatzidis M (2004) Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem Commun 7:749–760 Billinge SJ, Kanatzidis M (2004) Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem Commun 7:749–760
139.
Zurück zum Zitat Juhás P, Cherba D, Duxbury P, Punch W, Billinge S (2006) Ab initio determination of solid-state nanostructure. Nature 440(7084):655–658 Juhás P, Cherba D, Duxbury P, Punch W, Billinge S (2006) Ab initio determination of solid-state nanostructure. Nature 440(7084):655–658
140.
Zurück zum Zitat Billinge SJ, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316(5824):561–565 Billinge SJ, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316(5824):561–565
141.
Zurück zum Zitat Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23(3):171–263 Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23(3):171–263
142.
Zurück zum Zitat Maier J (1985) Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-‘inert’phase and application on AgCl: Al2O3 and AgC1: SiO2. J Phys Chem Solids 46(3):309–320 Maier J (1985) Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-‘inert’phase and application on AgCl: Al2O3 and AgC1: SiO2. J Phys Chem Solids 46(3):309–320
143.
Zurück zum Zitat Liang C (1973) Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc 120(10):1289–1292 Liang C (1973) Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc 120(10):1289–1292
144.
Zurück zum Zitat Phipps JB, Johnson D, Whitmore D (1981) Effect of composition and imperfections on ion transport in lithium iodine. Solid State Ion 5:393–396 Phipps JB, Johnson D, Whitmore D (1981) Effect of composition and imperfections on ion transport in lithium iodine. Solid State Ion 5:393–396
145.
Zurück zum Zitat Phipps J, Whitmore D (1983) Interfacial conduction in lithium iodide containing inert oxides. J Power Sources 9(3):373–378 Phipps J, Whitmore D (1983) Interfacial conduction in lithium iodide containing inert oxides. J Power Sources 9(3):373–378
146.
Zurück zum Zitat Takada K, Ohta N, Tateyama Y (2015) Recent progress in interfacial nanoarchitectonics in solid-state batteries. J Inorg Organomet Polym Mater 25(2):205–213 Takada K, Ohta N, Tateyama Y (2015) Recent progress in interfacial nanoarchitectonics in solid-state batteries. J Inorg Organomet Polym Mater 25(2):205–213
147.
Zurück zum Zitat Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28(6):1251–1286 Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28(6):1251–1286
149.
Zurück zum Zitat Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815 Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815
150.
Zurück zum Zitat Maier J (1987) Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J Electrochem Soc 134(6):1524–1535 Maier J (1987) Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J Electrochem Soc 134(6):1524–1535
151.
Zurück zum Zitat Dudney NJ (1989) Composite electrolytes. Annu Rev Mater Sci 19(1):103–120 Dudney NJ (1989) Composite electrolytes. Annu Rev Mater Sci 19(1):103–120
152.
Zurück zum Zitat Dudney NJ (1988) Enhanced ionic conductivity in composite electrolytes. Solid State Ion 28:1065–1072 Dudney NJ (1988) Enhanced ionic conductivity in composite electrolytes. Solid State Ion 28:1065–1072
153.
Zurück zum Zitat Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268 Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268
154.
Zurück zum Zitat Hood ZD, Wang H, Li Y, Pandian AS, Paranthaman MP, Liang C (2015) The “filler effect”: a study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ion 283:75–80 Hood ZD, Wang H, Li Y, Pandian AS, Paranthaman MP, Liang C (2015) The “filler effect”: a study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ion 283:75–80
155.
Zurück zum Zitat Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A (2017) Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem 129(3):771–774 Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A (2017) Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem 129(3):771–774
156.
Zurück zum Zitat Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745 Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745
157.
Zurück zum Zitat Cao C, Li Z-B, Wang X-L, Zhao X-B, Han W-Q (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2:25 Cao C, Li Z-B, Wang X-L, Zhao X-B, Han W-Q (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2:25
158.
Zurück zum Zitat Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388 Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388
159.
Zurück zum Zitat Kim S-H, Choi K-H, Cho S-J, Kil E-H, Lee S-Y (2013) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1(16):4949–4955 Kim S-H, Choi K-H, Cho S-J, Kil E-H, Lee S-Y (2013) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1(16):4949–4955
160.
Zurück zum Zitat Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci 113(26):7094–7099 Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci 113(26):7094–7099
161.
Zurück zum Zitat Baek S-W, Honma I, Kim J, Rangappa D (2017) Solidified inorganic–organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources 343:22–29 Baek S-W, Honma I, Kim J, Rangappa D (2017) Solidified inorganic–organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources 343:22–29
162.
Zurück zum Zitat Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H-W (2017) Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17(5):2967–2972 Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H-W (2017) Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17(5):2967–2972
163.
Zurück zum Zitat Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184 Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184
164.
Zurück zum Zitat Li Y, Han J-T, Vogel SC, Wang C-A (2015) The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion 269:57–61 Li Y, Han J-T, Vogel SC, Wang C-A (2015) The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion 269:57–61
165.
Zurück zum Zitat Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Lux SF, Zorba V, Russo R, Kostecki R, Liu Z (2014) The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300 Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Lux SF, Zorba V, Russo R, Kostecki R, Liu Z (2014) The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300
166.
Zurück zum Zitat Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992 Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992
167.
Zurück zum Zitat Zhou W, Gao H, Goodenough JB (2016) Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv Energy Mater 6(1):1501802 Zhou W, Gao H, Goodenough JB (2016) Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv Energy Mater 6(1):1501802
168.
Zurück zum Zitat Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53 Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53
169.
Zurück zum Zitat Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc Lond B 241(1300):6–8 Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc Lond B 241(1300):6–8
170.
Zurück zum Zitat Egerton R, Crozier P, Rice P (1987) Electron energy-loss spectroscopy and chemical change. Ultramicroscopy 23(3–4):305–312 Egerton R, Crozier P, Rice P (1987) Electron energy-loss spectroscopy and chemical change. Ultramicroscopy 23(3–4):305–312
171.
Zurück zum Zitat Egerton R, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409 Egerton R, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409
172.
Zurück zum Zitat Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C-L, Joubert L-M, Chin R, Koh AL, Yu Y (2017) Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358(6362):506–510 Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C-L, Joubert L-M, Chin R, Koh AL, Yu Y (2017) Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358(6362):506–510
173.
Zurück zum Zitat Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J-G (2017) New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett 17(12):7606–7612 Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J-G (2017) New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett 17(12):7606–7612
174.
Zurück zum Zitat Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF (2018) Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560(7718):345 Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF (2018) Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560(7718):345
175.
Zurück zum Zitat Hood ZD, Wang H, Samuthira Pandian A, Keum JK, Liang C (2016) Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J Am Chem Soc 138(6):1768–1771 Hood ZD, Wang H, Samuthira Pandian A, Keum JK, Liang C (2016) Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J Am Chem Soc 138(6):1768–1771
176.
Zurück zum Zitat Zhu Y, He X, Mo Y (2017) Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci 4(8):1600517 Zhu Y, He X, Mo Y (2017) Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci 4(8):1600517
177.
Zurück zum Zitat Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404 Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404
178.
Zurück zum Zitat Samsonov GV (2012) Handbook of the physicochemical properties of the elements. Springer, NewYork Samsonov GV (2012) Handbook of the physicochemical properties of the elements. Springer, NewYork
179.
Zurück zum Zitat Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135–139 Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135–139
180.
Zurück zum Zitat Gibson A (1977) In: Collins DH (ed) Power sources, chap 6. Academic Press Gibson A (1977) In: Collins DH (ed) Power sources, chap 6. Academic Press
182.
Zurück zum Zitat Taylor NJ, Stangeland-Molo S, Haslam CG, Sharafi A, Thompson T, Wang M, Garcia-Mendez R, Sakamoto J (2018) Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources 396:314–318 Taylor NJ, Stangeland-Molo S, Haslam CG, Sharafi A, Thompson T, Wang M, Garcia-Mendez R, Sakamoto J (2018) Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources 396:314–318
183.
Zurück zum Zitat Li J, Baggetto L, Martha SK, Veith GM, Nanda J, Liang C, Dudney NJ (2013) An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O4 5V cathode with conventional electrolytes. Adv Energy Mater 3(10):1275–1278 Li J, Baggetto L, Martha SK, Veith GM, Nanda J, Liang C, Dudney NJ (2013) An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O4 5V cathode with conventional electrolytes. Adv Energy Mater 3(10):1275–1278
184.
Zurück zum Zitat Li J, Dudney NJ, Nanda J, Liang C (2014) Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 6(13):10083–10088 Li J, Dudney NJ, Nanda J, Liang C (2014) Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 6(13):10083–10088
185.
Zurück zum Zitat Kozen AC, Pearse AJ, Lin C-F, Noked M, Rubloff GW (2015) Atomic layer deposition of the solid electrolyte LiPON. Chem Mater 27(15):5324–5331 Kozen AC, Pearse AJ, Lin C-F, Noked M, Rubloff GW (2015) Atomic layer deposition of the solid electrolyte LiPON. Chem Mater 27(15):5324–5331
186.
Zurück zum Zitat Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J Power Sources 196(16):6735–6741 Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J Power Sources 196(16):6735–6741
187.
Zurück zum Zitat Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K (2012) High-capacity thin film lithium batteries with sulfide solid electrolytes. J Power Sources 205:487–490 Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K (2012) High-capacity thin film lithium batteries with sulfide solid electrolytes. J Power Sources 205:487–490
188.
Zurück zum Zitat Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572 Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572
189.
Zurück zum Zitat Wang C, Gong Y, Liu B, Fu KK, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W (2016) Conformal, nanoscale ZnO surface modification of garnet-based solid state electrolyte for lithium metal anodes. Nano Lett 17(1):565–571 Wang C, Gong Y, Liu B, Fu KK, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W (2016) Conformal, nanoscale ZnO surface modification of garnet-based solid state electrolyte for lithium metal anodes. Nano Lett 17(1):565–571
190.
Zurück zum Zitat Luo W, Lin CF, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L (2017) Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater 7(2):1601526 Luo W, Lin CF, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L (2017) Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater 7(2):1601526
191.
Zurück zum Zitat Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y (2016) Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 138(37):12258–12262 Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y (2016) Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 138(37):12258–12262
192.
Zurück zum Zitat Kato A, Hayashi A, Tatsumisago M (2016) Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J Power Sources 309:27–32 Kato A, Hayashi A, Tatsumisago M (2016) Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J Power Sources 309:27–32
193.
Zurück zum Zitat Kato A, Suyama M, Hotehama C, Kowada H, Sakuda A, Hayashi A, Tatsumisago M (2018) High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films. J Electrochem Soc 165(9):A1950–A1954 Kato A, Suyama M, Hotehama C, Kowada H, Sakuda A, Hayashi A, Tatsumisago M (2018) High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films. J Electrochem Soc 165(9):A1950–A1954
194.
Zurück zum Zitat Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7(3):1053–1058 Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7(3):1053–1058
195.
Zurück zum Zitat Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, S-i O (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131(3):894–895 Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, S-i O (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131(3):894–895
196.
Zurück zum Zitat Zhou W, Li Y, Xin S, Goodenough JB (2017) Rechargeable sodium all-solid-state battery. ACS Cent Sci 3(1):52–57 Zhou W, Li Y, Xin S, Goodenough JB (2017) Rechargeable sodium all-solid-state battery. ACS Cent Sci 3(1):52–57
197.
Zurück zum Zitat Han X, Liu Y, Jia Z, Chen Y-C, Wan J, Weadock N, Gaskell KJ, Li T, Hu L (2013) Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 14(1):139–147 Han X, Liu Y, Jia Z, Chen Y-C, Wan J, Weadock N, Gaskell KJ, Li T, Hu L (2013) Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 14(1):139–147
198.
Zurück zum Zitat Jung SC, Kim H-J, Choi JW, Han Y-K (2014) Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion. Nano Lett 14(11):6559–6563 Jung SC, Kim H-J, Choi JW, Han Y-K (2014) Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion. Nano Lett 14(11):6559–6563
199.
Zurück zum Zitat Lotfabad EM, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516 Lotfabad EM, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516
200.
Zurück zum Zitat Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850–12861 Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850–12861
201.
Zurück zum Zitat Fu KK, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659 Fu KK, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659
202.
Zurück zum Zitat Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin CF, Mo Y (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29(22):1606042 Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin CF, Mo Y (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29(22):1606042
203.
Zurück zum Zitat Hachtel JA, Idrobo JC, Chi M (2018) Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chem Imaging 4(1):10 Hachtel JA, Idrobo JC, Chi M (2018) Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chem Imaging 4(1):10
Metadaten
Titel
Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy
verfasst von
Zachary D. Hood
Miaofang Chi
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03633-2

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science 15/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.