Skip to main content

2013 | OriginalPaper | Buchkapitel

Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration

verfasst von : Esther Reina-Romo, Clara Valero, Carlos Borau, Rafael Rey, Etelvina Javierre, María José Gómez-Benito, Jaime Domínguez, José Manuel García-Aznar

Erschienen in: Computational Modeling in Tissue Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Angiogenesis is essential for complex biological phenomena such as tissue engineering and bone repair. The ability to heal in these processes strongly depends on the ability of new blood vessels to grow. Capillary growth and its impact on human health has been focus of intense research from an in vivo, in vitro and in silico perspective. In fact, over the last decade many mathematical models have been proposed to understand and simulate the vascular network. This review addresses the role of the vascular network in well defined and controlled processes such as wound healing or distraction osteogenesis and covers the connection between vascularization and bone, starting with the biology of vascular ingrowth, moving through its impact on tissue engineering and bone regeneration, and ending with repair. Furthermore, we also describe the most recent in-silico models proposed to simulate the vascular network within bone constructs. Finally, discrete as well as continuum approaches are analyzed from a computational perspective and applied to three distinct phenomena: wound healing, distraction osteogenesis and individual cell migration in 3D.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The authors apologize any related reference with the present work which remained uncited along the text.
 
Literatur
1.
Zurück zum Zitat Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRef Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRef
2.
Zurück zum Zitat Anderson, A., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)MATHCrossRef Anderson, A., Chaplain, M.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)MATHCrossRef
3.
Zurück zum Zitat Aronson, J.: Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac. J. 31, 473–81 (1994)CrossRef Aronson, J.: Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac. J. 31, 473–81 (1994)CrossRef
4.
Zurück zum Zitat Azuaje, F.: Computational discrete models of tissue growth and regeneration. Brief Bioinform. 12, 64–77 (2011)CrossRef Azuaje, F.: Computational discrete models of tissue growth and regeneration. Brief Bioinform. 12, 64–77 (2011)CrossRef
5.
Zurück zum Zitat Balding, D., McElwain, D.L.S.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73 (1985)CrossRef Balding, D., McElwain, D.L.S.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73 (1985)CrossRef
6.
Zurück zum Zitat Basilico, C., Moscatelli, D.: The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165 (1992)CrossRef Basilico, C., Moscatelli, D.: The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165 (1992)CrossRef
7.
Zurück zum Zitat Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–21 (2007)CrossRef Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–21 (2007)CrossRef
8.
Zurück zum Zitat Beamer, B., Hettrich, C., Lane, J.: Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 6, 85–94 (2010)CrossRef Beamer, B., Hettrich, C., Lane, J.: Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 6, 85–94 (2010)CrossRef
9.
Zurück zum Zitat Bluteau, G., Julien, M., Magne, D.: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40, 568–576 (2007)CrossRef Bluteau, G., Julien, M., Magne, D.: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40, 568–576 (2007)CrossRef
10.
Zurück zum Zitat Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)CrossRef Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)CrossRef
11.
Zurück zum Zitat Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRef Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRef
12.
Zurück zum Zitat Borau, C., Kamm, R.D., García-Aznar, J.M.: Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8, Article No:066008 (2011) Borau, C., Kamm, R.D., García-Aznar, J.M.: Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8, Article No:066008 (2011)
13.
Zurück zum Zitat Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28, 3478–3488 (2007)CrossRef Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28, 3478–3488 (2007)CrossRef
14.
Zurück zum Zitat Brunner, U.H., Cordey, J., Schweiberer, L., Perren, S.M.: Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin. Orthop. Relat. Res. 301, 147–155 (1994) Brunner, U.H., Cordey, J., Schweiberer, L., Perren, S.M.: Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin. Orthop. Relat. Res. 301, 147–155 (1994)
15.
Zurück zum Zitat Byrne, H.M., Chaplain, M.A.J., Evans, D.L., Hopkinson, I.: Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment. J. Theor. Med. 2, 175–197 (2000)MATHCrossRef Byrne, H.M., Chaplain, M.A.J., Evans, D.L., Hopkinson, I.: Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment. J. Theor. Med. 2, 175–197 (2000)MATHCrossRef
16.
Zurück zum Zitat Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)CrossRef Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)CrossRef
17.
Zurück zum Zitat Carvalho, R.S., Einhorn, T.A., Lehmann, W., Edgar, C., Al-Yamani, A., Apazidis, A., Pacicca, D., Clemens, T.L., Gerstenfeld, L.C.: The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34, 849–861 (2004)CrossRef Carvalho, R.S., Einhorn, T.A., Lehmann, W., Edgar, C., Al-Yamani, A., Apazidis, A., Pacicca, D., Clemens, T.L., Gerstenfeld, L.C.: The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34, 849–861 (2004)CrossRef
18.
Zurück zum Zitat Chaplain, M.A.J., Byrne, H.M.: Mathematical modelling of wound healing and tumour growth-2 sides of the same coin. Wounds Compend. Clin. Res. Pract. 8, 42–48 (1996) Chaplain, M.A.J., Byrne, H.M.: Mathematical modelling of wound healing and tumour growth-2 sides of the same coin. Wounds Compend. Clin. Res. Pract. 8, 42–48 (1996)
19.
Zurück zum Zitat Chaplain, M.A.: Mathematical modeling of angiogenesis. J. Neurooncol. 50, 37–51 (2000)CrossRef Chaplain, M.A.: Mathematical modeling of angiogenesis. J. Neurooncol. 50, 37–51 (2000)CrossRef
20.
Zurück zum Zitat Chaplain, M.A.J., McDougall, S.R., Anderson, A.R.A.: Mathematical modelling of tumorinduced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)CrossRef Chaplain, M.A.J., McDougall, S.R., Anderson, A.R.A.: Mathematical modelling of tumorinduced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)CrossRef
21.
Zurück zum Zitat Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37, 129–145 (2009)CrossRef Checa, S., Prendergast, P.J.: A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37, 129–145 (2009)CrossRef
22.
Zurück zum Zitat Chen, G., Niemeyer, F., Wehner, T., Simon, U., Schuetz, M., Pearcy, M., Claes, L.: Simulation of the nutrient supply in fracture healing. J. Biomech. 42, 2575–2583 (2009)CrossRef Chen, G., Niemeyer, F., Wehner, T., Simon, U., Schuetz, M., Pearcy, M., Claes, L.: Simulation of the nutrient supply in fracture healing. J. Biomech. 42, 2575–2583 (2009)CrossRef
23.
Zurück zum Zitat Choi, I.H., Ahn, J.H., Chung, C.Y., Cho, T.J.: Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J. Orthop. Res. 18, 698–705 (2000)CrossRef Choi, I.H., Ahn, J.H., Chung, C.Y., Cho, T.J.: Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J. Orthop. Res. 18, 698–705 (2000)CrossRef
24.
Zurück zum Zitat Chu, T.W., Wang, Z.G., Zhu, P.F., Jiao, W.C., Wen, J.L., Gong, S.G.: Effect of vascular endothelial growth factor in fracture healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 16, 75–78 (2002) Chu, T.W., Wang, Z.G., Zhu, P.F., Jiao, W.C., Wen, J.L., Gong, S.G.: Effect of vascular endothelial growth factor in fracture healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 16, 75–78 (2002)
25.
Zurück zum Zitat Claes L.E., Heigele C.A. (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3):255–266CrossRef Claes L.E., Heigele C.A. (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3):255–266CrossRef
26.
Zurück zum Zitat Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–21 (2001)CrossRef Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–21 (2001)CrossRef
27.
Zurück zum Zitat Davis, G.E., Senger, D.R.: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1097 (2005)CrossRef Davis, G.E., Senger, D.R.: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1097 (2005)CrossRef
28.
Zurück zum Zitat Deckers, M.M., van Bezooijen, R.L., van der Horst, G., Hoogendam, J., van Der Bent, C., Papapoulos, S.E., Löwik, C.W.: Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002)CrossRef Deckers, M.M., van Bezooijen, R.L., van der Horst, G., Hoogendam, J., van Der Bent, C., Papapoulos, S.E., Löwik, C.W.: Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002)CrossRef
29.
Zurück zum Zitat Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)CrossRef Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)CrossRef
30.
Zurück zum Zitat Eckardt, H., Bundgaard, K.G., Christensen, K.S., Lind, M., Hansen, E.S., Hvid, I.: Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J. Orthop. Res. 21, 335–340 (2003)CrossRef Eckardt, H., Bundgaard, K.G., Christensen, K.S., Lind, M., Hansen, E.S., Hvid, I.: Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J. Orthop. Res. 21, 335–340 (2003)CrossRef
31.
Zurück zum Zitat Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993)CrossRef Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993)CrossRef
32.
Zurück zum Zitat Fang, T.D., Salim, A., Xia, W., Nacamuli, R.P., Guccione, S., Song, H.M., Carano, R.A., Filvaroff, E.H., Bednarski, M.D., Giaccia, A.J., Longaker, M.T.: Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20, 1114–1124 (2005)CrossRef Fang, T.D., Salim, A., Xia, W., Nacamuli, R.P., Guccione, S., Song, H.M., Carano, R.A., Filvaroff, E.H., Bednarski, M.D., Giaccia, A.J., Longaker, M.T.: Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20, 1114–1124 (2005)CrossRef
33.
Zurück zum Zitat Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87, 57–66 (1999)CrossRef Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87, 57–66 (1999)CrossRef
34.
Zurück zum Zitat Ferrara, N.: Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004)CrossRef Ferrara, N.: Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004)CrossRef
35.
Zurück zum Zitat Flegg, J.A., McElwain, D.L.S., Byrne, H.M., Turner, I.W.: A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput. Biol. 5, e1000451 (2009)MathSciNetCrossRef Flegg, J.A., McElwain, D.L.S., Byrne, H.M., Turner, I.W.: A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput. Biol. 5, e1000451 (2009)MathSciNetCrossRef
36.
Zurück zum Zitat Folkman, J.: Tumour angiogenesis: therapeutic implications. New Engl. J. Med. 285, 1182–1186 (1971)CrossRef Folkman, J.: Tumour angiogenesis: therapeutic implications. New Engl. J. Med. 285, 1182–1186 (1971)CrossRef
37.
Zurück zum Zitat Folkman, J., Shing, Y.: Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992) Folkman, J., Shing, Y.: Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992)
38.
Zurück zum Zitat Folkman, J., Brem, H.: Angiogenesis and inflamation. In: Gallin, J.I., Goldstein, I.M., Snyderman, R. (eds) Inflamation: Basic Principles and Clinical Correlates, pp. 821–839. Raven Press, New York (1992) Folkman, J., Brem, H.: Angiogenesis and inflamation. In: Gallin, J.I., Goldstein, I.M., Snyderman, R. (eds) Inflamation: Basic Principles and Clinical Correlates, pp. 821–839. Raven Press, New York (1992)
39.
Zurück zum Zitat Folkman, J.: Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007)CrossRef Folkman, J.: Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007)CrossRef
40.
Zurück zum Zitat Friedl, P., Bröcker, E.B.: The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57, 41–64 (2000)CrossRef Friedl, P., Bröcker, E.B.: The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57, 41–64 (2000)CrossRef
41.
Zurück zum Zitat Gaffney, E.A., Pugh, K., Maini, P.K., Arnold, F.: Investigating a simple model of cutaneous wound healing angiogenesis. J. Theor. Biol. 45, 337–374 (2002)MathSciNetMATH Gaffney, E.A., Pugh, K., Maini, P.K., Arnold, F.: Investigating a simple model of cutaneous wound healing angiogenesis. J. Theor. Biol. 45, 337–374 (2002)MathSciNetMATH
42.
Zurück zum Zitat Gerber, H.P., Vu, T.H., Ryan, A.M.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999)CrossRef Gerber, H.P., Vu, T.H., Ryan, A.M.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999)CrossRef
43.
Zurück zum Zitat Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161, 1163–1177 (2003)CrossRef Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161, 1163–1177 (2003)CrossRef
44.
Zurück zum Zitat Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 25, 137–158 (2008)CrossRefMathSciNet Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 25, 137–158 (2008)CrossRefMathSciNet
45.
Zurück zum Zitat Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)CrossRef Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)CrossRef
46.
Zurück zum Zitat Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T., Einhorn, T.A.: Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88, 873–884 (2003)CrossRef Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T., Einhorn, T.A.: Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88, 873–884 (2003)CrossRef
47.
Zurück zum Zitat Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven arrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)CrossRef Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven arrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)CrossRef
48.
Zurück zum Zitat Glowacki, J.: Angiogenesis in fracture repair. Clin. Orthop. 355, S82–S89 (1998) Glowacki, J.: Angiogenesis in fracture repair. Clin. Orthop. 355, S82–S89 (1998)
49.
Zurück zum Zitat Gómez-Benito, M.J., García-Aznar, J.M., Kuiper, J.H., Doblaré, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235, 105–119 (2005)CrossRef Gómez-Benito, M.J., García-Aznar, J.M., Kuiper, J.H., Doblaré, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235, 105–119 (2005)CrossRef
50.
Zurück zum Zitat Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27, 562–571 (2009)CrossRef Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27, 562–571 (2009)CrossRef
51.
Zurück zum Zitat Hausman, M.R., Schaffler, M.B., Majeska, R.J.: Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564 (2001)CrossRef Hausman, M.R., Schaffler, M.B., Majeska, R.J.: Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564 (2001)CrossRef
52.
Zurück zum Zitat Hopf, H.W., Gibson, J.J., Angeles, A.P., Constant, J.S., Feng, J.J., Rollins, M.D., Zamirul Hussain, M., Hunt, T.K.: Hyperoxia and angiogenesis. Wound Repair Regen. 13, 558–564 (2005)CrossRef Hopf, H.W., Gibson, J.J., Angeles, A.P., Constant, J.S., Feng, J.J., Rollins, M.D., Zamirul Hussain, M., Hunt, T.K.: Hyperoxia and angiogenesis. Wound Repair Regen. 13, 558–564 (2005)CrossRef
53.
Zurück zum Zitat Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H., Andrews, W.S.: Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated macrophages. Surgery 96, 48–54 (1984) Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H., Andrews, W.S.: Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated macrophages. Surgery 96, 48–54 (1984)
54.
Zurück zum Zitat Ilizarov, G.A., Soibel’man, L.M.: Clinical and experimental data on bloodless lengthening of lower extremities. Eksp Khir Anesteziol 14, 27–32 (1969) Ilizarov, G.A., Soibel’man, L.M.: Clinical and experimental data on bloodless lengthening of lower extremities. Eksp Khir Anesteziol 14, 27–32 (1969)
55.
Zurück zum Zitat Ilizarov, G.A.: The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin. Orthop. 238, 249–281 (1989) Ilizarov, G.A.: The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin. Orthop. 238, 249–281 (1989)
56.
Zurück zum Zitat Ilizarov, G.A., Ledyaev, V.I.: The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. Clin. Orthop. 280, 7–10 (1992) Ilizarov, G.A., Ledyaev, V.I.: The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. Clin. Orthop. 280, 7–10 (1992)
57.
Zurück zum Zitat Ilizarov, G.A.: Transosseous Osteosynthesis. Springer, Heidelberg (1992) Ilizarov, G.A.: Transosseous Osteosynthesis. Springer, Heidelberg (1992)
58.
Zurück zum Zitat Isaksson, H., Comas, O., Van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40, 2002–2011 (2007)CrossRef Isaksson, H., Comas, O., Van Donkelaar, C.C., Mediavilla, J., Wilson, W., Huiskes, R., Ito, K.: Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40, 2002–2011 (2007)CrossRef
59.
Zurück zum Zitat Jain, R.K.: Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003)CrossRef Jain, R.K.: Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003)CrossRef
60.
Zurück zum Zitat Jamali, Y., Azimi, M., Mofrad, M.R.: A sub-cellular viscoelastic model for cell population mechanics. PLoS ONE 5(8), pii:e12097 (2010) Jamali, Y., Azimi, M., Mofrad, M.R.: A sub-cellular viscoelastic model for cell population mechanics. PLoS ONE 5(8), pii:e12097 (2010)
61.
Zurück zum Zitat Javierre, E., Vermolen, F.J., Vuik, C., Zwaag, S.: Numerical modelling of epidermal wound healing. In: Kunisch, K., Of, G., Steinbach, O. (eds) Numerical Mathematics and Advanced Applications, pp. 83–90. Springer, Berlin (2008)CrossRef Javierre, E., Vermolen, F.J., Vuik, C., Zwaag, S.: Numerical modelling of epidermal wound healing. In: Kunisch, K., Of, G., Steinbach, O. (eds) Numerical Mathematics and Advanced Applications, pp. 83–90. Springer, Berlin (2008)CrossRef
62.
Zurück zum Zitat Javierre, E., Moreo, P., Doblar, M., Garca-Aznar, J.M.: Numerical modeling of a mechano-chemical theory for wound contraction analysis. Int. J. Solids Struct. 46, 3597–3606 (2009)MATHCrossRef Javierre, E., Moreo, P., Doblar, M., Garca-Aznar, J.M.: Numerical modeling of a mechano-chemical theory for wound contraction analysis. Int. J. Solids Struct. 46, 3597–3606 (2009)MATHCrossRef
63.
Zurück zum Zitat Josko, J., Gwozdz, B., Jedrzejowska-Szypulka, H.: Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med. Sci. Monit. 6, 1047–1052 (2000) Josko, J., Gwozdz, B., Jedrzejowska-Szypulka, H.: Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med. Sci. Monit. 6, 1047–1052 (2000)
64.
Zurück zum Zitat Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., Cheresh, D.A.: Regulation of cell motility by mitogen-activated protein kinase. J. Cell. Biol. 137, 481–492 (1997)CrossRef Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., Cheresh, D.A.: Regulation of cell motility by mitogen-activated protein kinase. J. Cell. Biol. 137, 481–492 (1997)CrossRef
65.
Zurück zum Zitat Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Strater, J., Möbest, D., Horch, R.E., Stark, G.B., Schaefer, D.J.: Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J. Cell. Mol. Med. 10, 695–707 (2006)CrossRef Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Strater, J., Möbest, D., Horch, R.E., Stark, G.B., Schaefer, D.J.: Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J. Cell. Mol. Med. 10, 695–707 (2006)CrossRef
66.
Zurück zum Zitat Le, A.X., Miclau, T., Hu, D., Helms, J.A.: Molecular aspects of healing in stabilized and non-stabilized fractures. J. Orthop. Res. 19, 78–84 (2001)CrossRef Le, A.X., Miclau, T., Hu, D., Helms, J.A.: Molecular aspects of healing in stabilized and non-stabilized fractures. J. Orthop. Res. 19, 78–84 (2001)CrossRef
67.
Zurück zum Zitat Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M.: A mathematical model for the roles of pericytes and macrophages in angiogenesis. Part I: the role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168, 77–115 (2000)MathSciNetMATHCrossRef Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M.: A mathematical model for the roles of pericytes and macrophages in angiogenesis. Part I: the role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168, 77–115 (2000)MathSciNetMATHCrossRef
68.
Zurück zum Zitat Levine, H.A., Tucker, A.L., Nilsen-Hamilton, M.: A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20, 155–175 (2002)CrossRef Levine, H.A., Tucker, A.L., Nilsen-Hamilton, M.: A mathematical model for the role of cell signal transduction in the initiation and inhibition of angiogenesis. Growth Factors 20, 155–175 (2002)CrossRef
69.
Zurück zum Zitat Li, S., Huang, N.F., Hsu, S.: Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96, 1110–1126 (2005)CrossRef Li, S., Huang, N.F., Hsu, S.: Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96, 1110–1126 (2005)CrossRef
70.
Zurück zum Zitat Lo, C., Wang, H., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)CrossRef Lo, C., Wang, H., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)CrossRef
71.
Zurück zum Zitat Macklin, P., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V., Lowengrub, J.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009)MathSciNetCrossRef Macklin, P., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V., Lowengrub, J.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009)MathSciNetCrossRef
72.
Zurück zum Zitat Maggelakis, S.: A mathematical model of tissue replacement during epidermal wound healing. Appl. Math. Model. 27, 189–196 (2003)MATHCrossRef Maggelakis, S.: A mathematical model of tissue replacement during epidermal wound healing. Appl. Math. Model. 27, 189–196 (2003)MATHCrossRef
73.
Zurück zum Zitat Mantzaris, N., Webb, S., Othmer, H.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)MathSciNetMATHCrossRef Mantzaris, N., Webb, S., Othmer, H.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)MathSciNetMATHCrossRef
74.
Zurück zum Zitat Marti, H.H.: Angiogenesis–a self-adapting principle in hypoxia. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis, pp. 163–180. Birkhauser, Switzerland (2005)CrossRef Marti, H.H.: Angiogenesis–a self-adapting principle in hypoxia. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis, pp. 163–180. Birkhauser, Switzerland (2005)CrossRef
75.
Zurück zum Zitat McCarthy, J.G., Schreiber, J., Karp, N., Thorne, C.H., Grayson, B.H.: Lengthening the human mandible by gradual distraction. Plast. Reconstr. Surg. 89, 1–8 (1992) McCarthy, J.G., Schreiber, J., Karp, N., Thorne, C.H., Grayson, B.H.: Lengthening the human mandible by gradual distraction. Plast. Reconstr. Surg. 89, 1–8 (1992)
76.
Zurück zum Zitat McCarthy, I.: The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88, 4–9 (2006)CrossRef McCarthy, I.: The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88, 4–9 (2006)CrossRef
77.
Zurück zum Zitat McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)CrossRef McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)CrossRef
78.
Zurück zum Zitat McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)MathSciNetCrossRef McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)MathSciNetCrossRef
80.
Zurück zum Zitat Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)CrossRef Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289, 44–54 (2006)CrossRef
81.
Zurück zum Zitat Merks, R.M., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)MathSciNetCrossRef Merks, R.M., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)MathSciNetCrossRef
82.
Zurück zum Zitat Merks, R.M.H., Koolwijk, P.: Modeling Morphogenesis in silico and in vitro: towards quantitative, predictive, cellbased modeling. Math. Model. Nat. Phenom. 4, 149–171 (2009)MathSciNetMATHCrossRef Merks, R.M.H., Koolwijk, P.: Modeling Morphogenesis in silico and in vitro: towards quantitative, predictive, cellbased modeling. Math. Model. Nat. Phenom. 4, 149–171 (2009)MathSciNetMATHCrossRef
83.
Zurück zum Zitat Mikos, A.G., Leite, S.M., Vacanti, J.P., Langer, R.: Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993)CrossRef Mikos, A.G., Leite, S.M., Vacanti, J.P., Langer, R.: Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993)CrossRef
84.
Zurück zum Zitat Milde, F., Bergdorf, M., Koumoutsakos, P.: A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J. 95, 3146–3160 (2008)CrossRef Milde, F., Bergdorf, M., Koumoutsakos, P.: A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J. 95, 3146–3160 (2008)CrossRef
85.
Zurück zum Zitat Moreo, P., Garca-Aznar, J.M., Doblar, M.: Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia 4, 613–621 (2008)CrossRef Moreo, P., Garca-Aznar, J.M., Doblar, M.: Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia 4, 613–621 (2008)CrossRef
86.
Zurück zum Zitat Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23, 463–483 (2002)CrossRef Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23, 463–483 (2002)CrossRef
87.
Zurück zum Zitat Oberringer, M., Jennevein, M., Matsch, S.E., Pohlemann, T., Seekamp, A.: Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem. Cell. Biol. 123, 595–603 (2005)CrossRef Oberringer, M., Jennevein, M., Matsch, S.E., Pohlemann, T., Seekamp, A.: Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem. Cell. Biol. 123, 595–603 (2005)CrossRef
88.
Zurück zum Zitat Olsen, L., Sherratt, J.A., Maini, P.K., Arnold, F.: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14, 261–281 (1997)MATHCrossRef Olsen, L., Sherratt, J.A., Maini, P.K., Arnold, F.: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14, 261–281 (1997)MATHCrossRef
89.
Zurück zum Zitat Orme, M.E., Chaplain, M.A.: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. Biol. 13, 73–98 (1996)MATHCrossRef Orme, M.E., Chaplain, M.A.: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. Biol. 13, 73–98 (1996)MATHCrossRef
90.
Zurück zum Zitat Orme, M.E., Chaplain, M.A.: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol. 14, 189–205 (1997)MATHCrossRef Orme, M.E., Chaplain, M.A.: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol. 14, 189–205 (1997)MATHCrossRef
91.
Zurück zum Zitat Owen, M.R., Alarcón, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)MathSciNetCrossRef Owen, M.R., Alarcón, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)MathSciNetCrossRef
92.
Zurück zum Zitat Pacicca, D.M., Patel, N., Lee, C., Salisbury, K., Lehmann, W., Carvalho, R., Gerstenfeld, L.C., Einhorn, T.A.: Expression of angiogenic factors during distraction osteogenesis. Bone 33, 889–898 (2003)CrossRef Pacicca, D.M., Patel, N., Lee, C., Salisbury, K., Lehmann, W., Carvalho, R., Gerstenfeld, L.C., Einhorn, T.A.: Expression of angiogenic factors during distraction osteogenesis. Bone 33, 889–898 (2003)CrossRef
93.
Zurück zum Zitat Palsson, E.: A three-dimensional model of cell movement in multicellular systems. Future Gener. Comput. Syst. 17, 835–852 (2001)MATHCrossRef Palsson, E.: A three-dimensional model of cell movement in multicellular systems. Future Gener. Comput. Syst. 17, 835–852 (2001)MATHCrossRef
94.
Zurück zum Zitat Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15, 739–751 (2008)CrossRef Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15, 739–751 (2008)CrossRef
95.
Zurück zum Zitat Peng, H., Wright, V., Usas, A., Gearhart, B., Shen, H.C., Cummins, J., Huard, J.: Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110, 751–759 (2002) Peng, H., Wright, V., Usas, A., Gearhart, B., Shen, H.C., Cummins, J., Huard, J.: Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110, 751–759 (2002)
96.
Zurück zum Zitat Pereira, C., Gold, W., Herndon, D.: Review paper: burn coverage technologies: current concepts and future directions. J. Biomater. Appl. 22, 101–121 (2007)CrossRef Pereira, C., Gold, W., Herndon, D.: Review paper: burn coverage technologies: current concepts and future directions. J. Biomater. Appl. 22, 101–121 (2007)CrossRef
97.
Zurück zum Zitat Pérez, M., Prendergast, P.J.: Random-walk model of cell-dispersal included in mechanobiological simulation of tissue differentiation. J. Biomech. 40, 2244–2253 (2007)CrossRef Pérez, M., Prendergast, P.J.: Random-walk model of cell-dispersal included in mechanobiological simulation of tissue differentiation. J. Biomech. 40, 2244–2253 (2007)CrossRef
98.
Zurück zum Zitat Pettet, G.J., Byrne, H.M., Mcelwain, D.L.S., Norbury, J.: A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)MATHCrossRef Pettet, G.J., Byrne, H.M., Mcelwain, D.L.S., Norbury, J.: A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)MATHCrossRef
99.
Zurück zum Zitat Pelham, R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)CrossRef Pelham, R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)CrossRef
100.
Zurück zum Zitat Pettet, G., Chaplain, M.A.J., Mcelwain, D.L.S., Byrne, H.M.: On the role of angiogenesis in wound healing. Proc. R Soc. Lond. Ser. B 263, 1487–1493 (1996)CrossRef Pettet, G., Chaplain, M.A.J., Mcelwain, D.L.S., Byrne, H.M.: On the role of angiogenesis in wound healing. Proc. R Soc. Lond. Ser. B 263, 1487–1493 (1996)CrossRef
101.
Zurück zum Zitat Prendergast, P.J., Huiskes, R., Soballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. ESB Research Award 1996. J. Biomech. 30, 539–548 (1997)CrossRef Prendergast, P.J., Huiskes, R., Soballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. ESB Research Award 1996. J. Biomech. 30, 539–548 (1997)CrossRef
102.
Zurück zum Zitat Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Modeling distraction osteogenesis: analysis of the distraction rate. Biomech. Model. Mechanobiol. 8, 323–335 (2009)CrossRef Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Modeling distraction osteogenesis: analysis of the distraction rate. Biomech. Model. Mechanobiol. 8, 323–335 (2009)CrossRef
103.
Zurück zum Zitat Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech. Model. Mechanobiol. 9, 103–115 (2010)CrossRef Reina-Romo, E., Gómez-Benito, M.J., García-Aznar, J.M., Domínguez, J., Doblaré, M.: Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech. Model. Mechanobiol. 9, 103–115 (2010)CrossRef
104.
Zurück zum Zitat Rockwood, C.A., Green, D.P., Bucholz, R.W., Heckman, J.D., Court-Brown, C.M., Koval, K.J., Tornetta, P.: Rockwood and green’s fractures. In: Adults: Rockwood, Green, and Wilkins’ Fractures. Lippincott Williams & Wilkins, ISBN 0781746361 (2006) Rockwood, C.A., Green, D.P., Bucholz, R.W., Heckman, J.D., Court-Brown, C.M., Koval, K.J., Tornetta, P.: Rockwood and green’s fractures. In: Adults: Rockwood, Green, and Wilkins’ Fractures. Lippincott Williams & Wilkins, ISBN 0781746361 (2006)
105.
Zurück zum Zitat Ryan, T.J.: Biochemical consequences of mechanical forces generated by distension and distortion. J. Am. Acad. Dermatol. 21, 115–130 (1989)CrossRef Ryan, T.J.: Biochemical consequences of mechanical forces generated by distension and distortion. J. Am. Acad. Dermatol. 21, 115–130 (1989)CrossRef
106.
Zurück zum Zitat Safran, M., Kaelin, W.G.J.: HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003) Safran, M., Kaelin, W.G.J.: HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003)
107.
Zurück zum Zitat Sanz-Herrera, J.A., Moreo, P., Garca-Aznar, J.M., Doblar, M.: HOn the effect of substrate curvature on cell mechanics. Biomaterials 30(34), 6674–6686 (2009)CrossRef Sanz-Herrera, J.A., Moreo, P., Garca-Aznar, J.M., Doblar, M.: HOn the effect of substrate curvature on cell mechanics. Biomaterials 30(34), 6674–6686 (2009)CrossRef
108.
Zurück zum Zitat Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.: Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci. USA 105, 2628–2633 (2008)CrossRef Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.: Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci. USA 105, 2628–2633 (2008)CrossRef
109.
Zurück zum Zitat Schwarz, U.S., Bischofs, I.B.: Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772 (2005)CrossRef Schwarz, U.S., Bischofs, I.B.: Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772 (2005)CrossRef
110.
Zurück zum Zitat Semenza, G.L., Wang, G.L.: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992) Semenza, G.L., Wang, G.L.: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992)
111.
Zurück zum Zitat Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009)CrossRef Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009)CrossRef
112.
Zurück zum Zitat Shefelbine, S.J., Augat, P., Claes, L., Simon, U.: Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38, 2440–2450 (2005)CrossRef Shefelbine, S.J., Augat, P., Claes, L., Simon, U.: Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38, 2440–2450 (2005)CrossRef
113.
Zurück zum Zitat Simon, U., Augat, P., Utz, M., Claes, L.: A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14, 79–93 (2011)CrossRef Simon, U., Augat, P., Utz, M., Claes, L.: A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14, 79–93 (2011)CrossRef
114.
Zurück zum Zitat Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)MATHCrossRef Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)MATHCrossRef
115.
Zurück zum Zitat Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44, 96–123 (2006)MATHCrossRef Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44, 96–123 (2006)MATHCrossRef
116.
Zurück zum Zitat Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)CrossRef Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)CrossRef
117.
Zurück zum Zitat Street, J., Winter, D., Wang, J.H., Wakai, A., McGuinness, A., Redmond, H.P.: Is human fracture hematoma inherently angiogenic? Clin. Orthop. 378, 224–237 (2000)CrossRef Street, J., Winter, D., Wang, J.H., Wakai, A., McGuinness, A., Redmond, H.P.: Is human fracture hematoma inherently angiogenic? Clin. Orthop. 378, 224–237 (2000)CrossRef
118.
Zurück zum Zitat Street, J.T., Wang, J.H., Wu, Q.D., Wakai, A., McGuinness, A., Redmond, H.P.: The angiogenic response to skeletal injury is preserved in the elderly. J. Orthop. Res. 19, 1057–1066 (2001)CrossRef Street, J.T., Wang, J.H., Wu, Q.D., Wakai, A., McGuinness, A., Redmond, H.P.: The angiogenic response to skeletal injury is preserved in the elderly. J. Orthop. Res. 19, 1057–1066 (2001)CrossRef
119.
Zurück zum Zitat Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V. Jr, Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., Filvaroff, E.H.: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002)CrossRef Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V. Jr, Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., Filvaroff, E.H.: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002)CrossRef
120.
Zurück zum Zitat Torpy, J.M., Lynm, C., Glass, R.M.: JAMA patient page. Burn Inj JAMA 302:1828 (2009) Torpy, J.M., Lynm, C., Glass, R.M.: JAMA patient page. Burn Inj JAMA 302:1828 (2009)
121.
Zurück zum Zitat Tsopanoglou, N.E., Andriopoulou, P., Maragoudakis, M.E.: On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. Am. J. Physiol. Cell. Physiol. 283, C1501–C1510 (2002) Tsopanoglou, N.E., Andriopoulou, P., Maragoudakis, M.E.: On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. Am. J. Physiol. Cell. Physiol. 283, C1501–C1510 (2002)
122.
Zurück zum Zitat Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., Jain, R.K.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004)CrossRef Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., Jain, R.K.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004)CrossRef
123.
Zurück zum Zitat Wood, L., Kamm, R., Asada, H.: Stochastic modeling and identification of emergent behaviors of an Endothelial Cell population in angiogenic pattern formation. Int. J. Robot. Res. 30, 659–677 (2011)CrossRef Wood, L., Kamm, R., Asada, H.: Stochastic modeling and identification of emergent behaviors of an Endothelial Cell population in angiogenic pattern formation. Int. J. Robot. Res. 30, 659–677 (2011)CrossRef
124.
Zurück zum Zitat Xue, C., Friedman, A., Sen, C.K.: A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci. USA 106, 16782–16787 (2009)CrossRef Xue, C., Friedman, A., Sen, C.K.: A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci. USA 106, 16782–16787 (2009)CrossRef
125.
Zurück zum Zitat Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)CrossRef Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000)CrossRef
126.
Zurück zum Zitat Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., Nomura, S.: Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79, 824–830 (1997)CrossRef Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., Nomura, S.: Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79, 824–830 (1997)CrossRef
127.
Zurück zum Zitat Zaman, M.H., Kamm, R.D., Matsudaira, P., Lauffenburger, D.A.: Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005)CrossRef Zaman, M.H., Kamm, R.D., Matsudaira, P., Lauffenburger, D.A.: Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005)CrossRef
128.
Zurück zum Zitat Zelzer, E., McLean, W., Ng, Y.S., Fukai, N., Reginato, A.M., Lovejoy, S., D’Amore, P.A., Olsen, B.R.: Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002) Zelzer, E., McLean, W., Ng, Y.S., Fukai, N., Reginato, A.M., Lovejoy, S., D’Amore, P.A., Olsen, B.R.: Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002)
Metadaten
Titel
Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration
verfasst von
Esther Reina-Romo
Clara Valero
Carlos Borau
Rafael Rey
Etelvina Javierre
María José Gómez-Benito
Jaime Domínguez
José Manuel García-Aznar
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2011_111

Neuer Inhalt