Skip to main content
Erschienen in: Journal of Materials Science 19/2018

19.06.2018 | Mechanochemical Synthesis

Mechanochemical preparation of nanocrystalline metal halide phosphors

verfasst von: Jun Zhang, Nicolas Riesen, Lubina Thattamveedu Kasim, Kate Badek, Hans Riesen

Erschienen in: Journal of Materials Science | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, mechanochemistry has experienced a massive resurgence allowing for solvent-free preparation of many important materials with minimal energy requirements. This paper provides a review of the mechanochemical preparation of nanocrystalline metal halides for applications as inorganic phosphor materials. The review puts strong emphasis on our recent work on optical and X-ray storage phosphors such as the matlockite BaFCl:Sm3+. In addition, previously unpublished results are presented including the effect on the samarium oxidation state when using ball-milling, as well as results on other rare earth-doped matlockites. We outline how mechanochemical methods can be applied to synthesise, without the need for solvents and high temperatures, a wide range of halides ranging from the most important commercial X-ray storage phosphor BaFBr:Eu2+ to lead perovskites of the formula APbX3 with A = Cs+, CH3NH3+, etc., and X = F, Cl, Br, I or a mixture thereof. We also demonstrate that a wide variety of solid solutions of the general formula \( {\text{M}}_{x}^{1} {\text{M}}_{1 - x}^{2} {\text{FX}}_{y}^{1} {\text{X}}_{1 - y}^{2} \) (with M1 and M2 = Ba, Sr, Ca; X1, X2 = Cl, Br, I) that can be suitable hosts for luminescent activator ions, can be prepared by mechanochemical methods. Importantly, for prolonged grinding times with a high-energy ball-mill, crystallites on the nanoscale can be obtained as can be confirmed by Rietveld refinements of powder XRD patterns and electron microscopy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRef James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRef
2.
Zurück zum Zitat Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132CrossRef Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132CrossRef
3.
Zurück zum Zitat Takacs L (2000) Quicksilver from cinnabar: the first documented mechanochemical reaction? JOM 52:12–13CrossRef Takacs L (2000) Quicksilver from cinnabar: the first documented mechanochemical reaction? JOM 52:12–13CrossRef
4.
Zurück zum Zitat Baláž P (2000) Mechanochemistry and mechanical activation of solids. In: Baláž P (ed) Extractive metallurgy of activated minerals. Elsevier, Amsterdam, pp 1–14 Baláž P (2000) Mechanochemistry and mechanical activation of solids. In: Baláž P (ed) Extractive metallurgy of activated minerals. Elsevier, Amsterdam, pp 1–14
5.
6.
Zurück zum Zitat Gold Book (2014) Compendium of chemical terminology. In: International union of pure and applied chemistry, Version 2.3.3. pp 903 Gold Book (2014) Compendium of chemical terminology. In: International union of pure and applied chemistry, Version 2.3.3. pp 903
7.
Zurück zum Zitat Avvakumov EG, Senna M, Kosova NV (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Springer Science & Business Media, Berlin Avvakumov EG, Senna M, Kosova NV (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Springer Science & Business Media, Berlin
8.
Zurück zum Zitat Urakaev FK, Bulavchenko AI, Uralbekov BM et al (2016) Mechanochemical synthesis of colloidal sulfur particles in the Na2S2O3–H2(C4H4O4)–Na2SO3 system. Colloid J 78:210–219CrossRef Urakaev FK, Bulavchenko AI, Uralbekov BM et al (2016) Mechanochemical synthesis of colloidal sulfur particles in the Na2S2O3–H2(C4H4O4)–Na2SO3 system. Colloid J 78:210–219CrossRef
9.
Zurück zum Zitat Sopicka-Lizer M (2010) High-energy ball milling: mechanochemical processing of nanopowders. Elsevier, New YorkCrossRef Sopicka-Lizer M (2010) High-energy ball milling: mechanochemical processing of nanopowders. Elsevier, New YorkCrossRef
10.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
11.
Zurück zum Zitat Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986CrossRef Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986CrossRef
12.
Zurück zum Zitat Idris NM, Jayakumar MKG, Bansal A, Zhang Y (2015) Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 44:1449–1478CrossRef Idris NM, Jayakumar MKG, Bansal A, Zhang Y (2015) Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev 44:1449–1478CrossRef
13.
Zurück zum Zitat Baig RBN, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584CrossRef Baig RBN, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584CrossRef
14.
Zurück zum Zitat Oliveira PFM, Baron M, Chamayou A, Andre-Barres C, Guidetti B, Baltas M (2014) Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones. RSC Adv 4:56736–56742CrossRef Oliveira PFM, Baron M, Chamayou A, Andre-Barres C, Guidetti B, Baltas M (2014) Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones. RSC Adv 4:56736–56742CrossRef
15.
Zurück zum Zitat Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H (2009) Energetic assessment of the Suzuki–Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chem 11:1894–1899CrossRef Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H (2009) Energetic assessment of the Suzuki–Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chem 11:1894–1899CrossRef
16.
Zurück zum Zitat Katsenis AD, Puškarić A, Štrukil V et al (2015) In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat Commun 6:6662CrossRef Katsenis AD, Puškarić A, Štrukil V et al (2015) In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat Commun 6:6662CrossRef
17.
Zurück zum Zitat Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583CrossRef Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583CrossRef
18.
Zurück zum Zitat Hernandez JG, Butler IS, Friscic T (2014) Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions. Chem Sci 5:3576–3582CrossRef Hernandez JG, Butler IS, Friscic T (2014) Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions. Chem Sci 5:3576–3582CrossRef
19.
Zurück zum Zitat Zhang Q, Saito F (2012) A review on mechanochemical syntheses of functional materials. Adv Powder Technol 23:523–531CrossRef Zhang Q, Saito F (2012) A review on mechanochemical syntheses of functional materials. Adv Powder Technol 23:523–531CrossRef
20.
Zurück zum Zitat Bowden FP, Persson PA (1961) Deformation, heating and melting of solids in high-speed friction. Proc R Soc Lond A 260:433–458CrossRef Bowden FP, Persson PA (1961) Deformation, heating and melting of solids in high-speed friction. Proc R Soc Lond A 260:433–458CrossRef
21.
Zurück zum Zitat Urakaev FK, Boldyrev V (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol 107:93–107CrossRef Urakaev FK, Boldyrev V (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol 107:93–107CrossRef
22.
Zurück zum Zitat Urakaev FK (2013) Simulation of the mechanically induced self-propagating reactions: heat source of “viscous flow” and mechanism of MSR in Zn–S system. Combust Sci Technol 185:1281–1294CrossRef Urakaev FK (2013) Simulation of the mechanically induced self-propagating reactions: heat source of “viscous flow” and mechanism of MSR in Zn–S system. Combust Sci Technol 185:1281–1294CrossRef
23.
Zurück zum Zitat Urakaev FK, Boldyrev V (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 2. Applications of the theory. Experiment. Powder Technol 107:197–206CrossRef Urakaev FK, Boldyrev V (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 2. Applications of the theory. Experiment. Powder Technol 107:197–206CrossRef
24.
Zurück zum Zitat Urakaev FK (2010) Mechanism and kinetics of mechanochemical processes. In: High-energy ball milling. Elsevier, pp 9–44 Urakaev FK (2010) Mechanism and kinetics of mechanochemical processes. In: High-energy ball milling. Elsevier, pp 9–44
25.
Zurück zum Zitat Liu Z, Stevens-Kalceff MA, Wang X, Riesen H (2013) Mechanochemical synthesis of nanocrystalline BaFCl:Sm3+ storage phosphor by ball milling. Chem Phys Lett 588:193–197CrossRef Liu Z, Stevens-Kalceff MA, Wang X, Riesen H (2013) Mechanochemical synthesis of nanocrystalline BaFCl:Sm3+ storage phosphor by ball milling. Chem Phys Lett 588:193–197CrossRef
26.
Zurück zum Zitat Wang X, Riesen H (2015) Mechanochemical synthesis of an efficient nanocrystalline BaFBr:Eu2+ X-ray storage phosphor. RSC Adv 5:85506–85510CrossRef Wang X, Riesen H (2015) Mechanochemical synthesis of an efficient nanocrystalline BaFBr:Eu2+ X-ray storage phosphor. RSC Adv 5:85506–85510CrossRef
27.
Zurück zum Zitat Severin I, Seifert H-J, Yariv S (1990) Mechanochemical reactions of alkali metal-halides—the systems AX/BX/(H2O) with A, B = Na, K, Rb, Cs and X = Cl, Br, I. J. Solid State Chem 88:401–405CrossRef Severin I, Seifert H-J, Yariv S (1990) Mechanochemical reactions of alkali metal-halides—the systems AX/BX/(H2O) with A, B = Na, K, Rb, Cs and X = Cl, Br, I. J. Solid State Chem 88:401–405CrossRef
28.
Zurück zum Zitat Valor A, Fernández-Bertrán J, Radilla J (2001) On the interactions of potassium bromide with alkali fluorides. J Fluorine Chem 107:137–139CrossRef Valor A, Fernández-Bertrán J, Radilla J (2001) On the interactions of potassium bromide with alkali fluorides. J Fluorine Chem 107:137–139CrossRef
29.
Zurück zum Zitat Gocheva ID, Nishijima M, Doi T, Okada S, Yamaki J-I, Nishida T (2009) Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. J Power Sour 187:247–252CrossRef Gocheva ID, Nishijima M, Doi T, Okada S, Yamaki J-I, Nishida T (2009) Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. J Power Sour 187:247–252CrossRef
30.
Zurück zum Zitat Fernández-Bertrán J, Reguera E (1996) Mechanochemical reactions in alkali halide pressed disks. Solid State Ion 93:139–146CrossRef Fernández-Bertrán J, Reguera E (1996) Mechanochemical reactions in alkali halide pressed disks. Solid State Ion 93:139–146CrossRef
31.
Zurück zum Zitat Shoval S, Yariv S (1998) Formation of carnallite type double salts by grinding mixtures of magnesium and alkali halides with the same anions. J Therm Anal Calorim 51:251–263CrossRef Shoval S, Yariv S (1998) Formation of carnallite type double salts by grinding mixtures of magnesium and alkali halides with the same anions. J Therm Anal Calorim 51:251–263CrossRef
32.
Zurück zum Zitat Scholz G, Korup O (2006) High-energy ball milling-a possible synthesis route for cryolite and chiolite. Solid State Sci 8:678–684CrossRef Scholz G, Korup O (2006) High-energy ball milling-a possible synthesis route for cryolite and chiolite. Solid State Sci 8:678–684CrossRef
33.
Zurück zum Zitat Lee J, Zhang Q, Saito F (2001) Mechanochemical synthesis of ternary fluorides with perovskite structures. Chem Lett 30:700–701CrossRef Lee J, Zhang Q, Saito F (2001) Mechanochemical synthesis of ternary fluorides with perovskite structures. Chem Lett 30:700–701CrossRef
34.
Zurück zum Zitat Lu J, Zhang Q, Saito F (2002) Mechanochemical synthesis of nano-sized complex fluorides from pair of different constituent fluoride compounds. Chem Lett 31:1176–1177CrossRef Lu J, Zhang Q, Saito F (2002) Mechanochemical synthesis of nano-sized complex fluorides from pair of different constituent fluoride compounds. Chem Lett 31:1176–1177CrossRef
35.
Zurück zum Zitat Dimov N, Nishimura A, Chihara K, Kitajou A, Gocheva ID, Okada S (2013) Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium–ion and sodium–ion batteries. Electrochim Acta 110:214–220CrossRef Dimov N, Nishimura A, Chihara K, Kitajou A, Gocheva ID, Okada S (2013) Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium–ion and sodium–ion batteries. Electrochim Acta 110:214–220CrossRef
36.
Zurück zum Zitat Pawelke RH, Felderhoff M, Weidenthaler C, Bogdanovíc B, Schüth F (2009) Mechanochemical synthesis of ternary potassium transition metal chlorides. Z Anorg Allg Chem 635:265–270CrossRef Pawelke RH, Felderhoff M, Weidenthaler C, Bogdanovíc B, Schüth F (2009) Mechanochemical synthesis of ternary potassium transition metal chlorides. Z Anorg Allg Chem 635:265–270CrossRef
37.
Zurück zum Zitat Scholz G, Meyer K, Düvel A, Heitjans P, Kemnitz E (2013) Fast ion conducting nanocrystalline alkaline earth fluorides simply prepared by mixing or manual shaking. Z Anorg Allg Chem 639:960–966CrossRef Scholz G, Meyer K, Düvel A, Heitjans P, Kemnitz E (2013) Fast ion conducting nanocrystalline alkaline earth fluorides simply prepared by mixing or manual shaking. Z Anorg Allg Chem 639:960–966CrossRef
38.
Zurück zum Zitat Dreger M, Scholz G, Kemnitz E (2012) An easy access to nanocrystalline alkaline earth metal fluorides—just by shaking. Solid State Sci 14:528–534CrossRef Dreger M, Scholz G, Kemnitz E (2012) An easy access to nanocrystalline alkaline earth metal fluorides—just by shaking. Solid State Sci 14:528–534CrossRef
39.
Zurück zum Zitat Rongeat C, Reddy MA, Witter R, Fichtner M (2013) Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J Phys Chem C 117:4943–4950CrossRef Rongeat C, Reddy MA, Witter R, Fichtner M (2013) Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J Phys Chem C 117:4943–4950CrossRef
40.
Zurück zum Zitat Ruprecht B, Wilkening M, Steuernagel S, Heitjans P (2008) Anion diffusivity in highly conductive nanocrystalline BaF2:CaF2 composites prepared by high-energy ball milling. J Mater Chem 18:5412–5416CrossRef Ruprecht B, Wilkening M, Steuernagel S, Heitjans P (2008) Anion diffusivity in highly conductive nanocrystalline BaF2:CaF2 composites prepared by high-energy ball milling. J Mater Chem 18:5412–5416CrossRef
41.
Zurück zum Zitat Ruprecht B, Wilkening M, Feldhoff A, Steuernagel S, Heitjans P (2009) High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys Chem Chem Phys 11:3071–3081CrossRef Ruprecht B, Wilkening M, Feldhoff A, Steuernagel S, Heitjans P (2009) High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys Chem Chem Phys 11:3071–3081CrossRef
42.
Zurück zum Zitat Düvel A, Ruprecht B, Heitjans P, Wilkening M (2011) Mixed alkaline-earth effect in the metastable anion conductor Ba1–xCaxF2 (0 ≤ x ≤ 1): correlating long-range ion transport with local structures revealed by ultrafast 19F MAS NMR. J Phys Chem C 115:23784–23789CrossRef Düvel A, Ruprecht B, Heitjans P, Wilkening M (2011) Mixed alkaline-earth effect in the metastable anion conductor Ba1–xCaxF2 (0 ≤ x ≤ 1): correlating long-range ion transport with local structures revealed by ultrafast 19F MAS NMR. J Phys Chem C 115:23784–23789CrossRef
44.
Zurück zum Zitat Heise M, Scholz G, Düvel A, Heitjans P, Kemnitz E (2016) Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1−xMbxF2 (M: Ca, Sr, Ba). Solid State Sci 60:65–74CrossRef Heise M, Scholz G, Düvel A, Heitjans P, Kemnitz E (2016) Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1−xMbxF2 (M: Ca, Sr, Ba). Solid State Sci 60:65–74CrossRef
45.
Zurück zum Zitat Ritter B, Krahl T, Scholz G, Kemnitz E (2016) Local structures of solid solutions Sr1–xYxF2+x (x = 0…0.5) with fluorite structure prepared by sol–gel and mechanochemical syntheses. J Phys Chem C 120:8992–8999CrossRef Ritter B, Krahl T, Scholz G, Kemnitz E (2016) Local structures of solid solutions Sr1–xYxF2+x (x = 0…0.5) with fluorite structure prepared by sol–gel and mechanochemical syntheses. J Phys Chem C 120:8992–8999CrossRef
46.
Zurück zum Zitat Scholz G, Breitfeld S, Krahl T, Düvel A, Heitjans P, Kemnitz E (2015) Mechanochemical synthesis of MgF2–MF2 composite systems (M = Ca, Sr, Ba). Solid State Sci 50:32–41CrossRef Scholz G, Breitfeld S, Krahl T, Düvel A, Heitjans P, Kemnitz E (2015) Mechanochemical synthesis of MgF2–MF2 composite systems (M = Ca, Sr, Ba). Solid State Sci 50:32–41CrossRef
47.
Zurück zum Zitat Sobolev BP, Sviridov IA, Fadeeva VI et al (2005) Mechanochemical synthesis of nonstoichiometric fluorite Ca1−xLaxF2+x nanocrystals from CaF2 and LaF3 single crystals. Crystallogr Rep 50:478–485CrossRef Sobolev BP, Sviridov IA, Fadeeva VI et al (2005) Mechanochemical synthesis of nonstoichiometric fluorite Ca1−xLaxF2+x nanocrystals from CaF2 and LaF3 single crystals. Crystallogr Rep 50:478–485CrossRef
48.
Zurück zum Zitat Solinas I, Lutz HD (1995) Nonceramic Preparation techniques for ternary halides AB2X4 with A = Mg, Mn, Zn; B = Li, Na; X = Cl, Br. J Solid State Chem 117:34–38CrossRef Solinas I, Lutz HD (1995) Nonceramic Preparation techniques for ternary halides AB2X4 with A = Mg, Mn, Zn; B = Li, Na; X = Cl, Br. J Solid State Chem 117:34–38CrossRef
49.
Zurück zum Zitat Lee J, Zhang Q, Saito F (2001) Mechanochemical synthesis of LaOX (X = Cl, Br) and their solid state solutions. J Solid State Chem 160:469–473CrossRef Lee J, Zhang Q, Saito F (2001) Mechanochemical synthesis of LaOX (X = Cl, Br) and their solid state solutions. J Solid State Chem 160:469–473CrossRef
50.
Zurück zum Zitat Bowmaker GA, Di Nicola C, Pettinari C, Skelton BW, Somers N, White AH (2011) Mechanochemical synthesis in copper(ii) halide/pyridine systems: single crystal X-ray diffraction and IR spectroscopic studies. Dalton Trans 40:5102–5115CrossRef Bowmaker GA, Di Nicola C, Pettinari C, Skelton BW, Somers N, White AH (2011) Mechanochemical synthesis in copper(ii) halide/pyridine systems: single crystal X-ray diffraction and IR spectroscopic studies. Dalton Trans 40:5102–5115CrossRef
51.
Zurück zum Zitat Sobolev BP, Sviridov IA, Fadeeva VI et al (2008) Mechanochemical synthesis of nonstoichiometric nanocrystals La1−yCayF3−y with a tysonite structure and nanoceramic materials from CaF2 and LaF3 crystals. Crystallogr Rep 53:868CrossRef Sobolev BP, Sviridov IA, Fadeeva VI et al (2008) Mechanochemical synthesis of nonstoichiometric nanocrystals La1−yCayF3−y with a tysonite structure and nanoceramic materials from CaF2 and LaF3 crystals. Crystallogr Rep 53:868CrossRef
52.
Zurück zum Zitat Manivannan V, Parhi P, Kramer JW (2008) Metathesis synthesis and characterization of complex metal fluoride, KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation. Bull Mater Sci 31:987–993CrossRef Manivannan V, Parhi P, Kramer JW (2008) Metathesis synthesis and characterization of complex metal fluoride, KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation. Bull Mater Sci 31:987–993CrossRef
53.
Zurück zum Zitat Heise M, Scholz G, Kemnitz E (2017) Mechanochemical synthesis of PbF2 by high energy ball milling. Solid State Sci 72:41–46CrossRef Heise M, Scholz G, Kemnitz E (2017) Mechanochemical synthesis of PbF2 by high energy ball milling. Solid State Sci 72:41–46CrossRef
54.
Zurück zum Zitat Lee J, Shin H, Lee J, Chung H, Zhang Q, Saito F (2003) Mechanochemical syntheses of perovskite KMIIF3 with cubic structure (MII = Mg, Ca, Mn, Fe Co, Ni, and Zn). Mater Trans 44:1457–1460CrossRef Lee J, Shin H, Lee J, Chung H, Zhang Q, Saito F (2003) Mechanochemical syntheses of perovskite KMIIF3 with cubic structure (MII = Mg, Ca, Mn, Fe Co, Ni, and Zn). Mater Trans 44:1457–1460CrossRef
55.
Zurück zum Zitat Beck H (1976) A study on mixed halide compounds MFX (M = Ca, Sr, Eu, Ba; X = Cl, Br, I). J Solid State Chem 17:275–282CrossRef Beck H (1976) A study on mixed halide compounds MFX (M = Ca, Sr, Eu, Ba; X = Cl, Br, I). J Solid State Chem 17:275–282CrossRef
56.
Zurück zum Zitat Hagemann H, D’Anna V, Lawson Daku M, Kubel F (2012) Crystal chemistry in the barium fluoride chloride system. Cryst Growth Des 12:1124–1131CrossRef Hagemann H, D’Anna V, Lawson Daku M, Kubel F (2012) Crystal chemistry in the barium fluoride chloride system. Cryst Growth Des 12:1124–1131CrossRef
57.
Zurück zum Zitat Pal P, Penhouët T, D’Anna V, Hagemann H (2013) Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts. J Lumin 134:678–685CrossRef Pal P, Penhouët T, D’Anna V, Hagemann H (2013) Effect of pressure on the free ion and crystal field parameters of Sm2+ in BaFBr and SrFBr hosts. J Lumin 134:678–685CrossRef
58.
Zurück zum Zitat Falin M, Bill H, Lovy D (2004) EPR of Sm3+ in BaFCl single crystals. J Phys: Condens Matter 16:1293 Falin M, Bill H, Lovy D (2004) EPR of Sm3+ in BaFCl single crystals. J Phys: Condens Matter 16:1293
59.
Zurück zum Zitat Jaaniso R, Bill H (1991) Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals. EPL 16:569CrossRef Jaaniso R, Bill H (1991) Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals. EPL 16:569CrossRef
60.
Zurück zum Zitat Pal P, Hagemann H, Bill H, Zhang J (2015) Temperature and host dependence of the transition interference between f–f and f–d transitions of Sm2+ in matlockites. J Lumin 161:323–329CrossRef Pal P, Hagemann H, Bill H, Zhang J (2015) Temperature and host dependence of the transition interference between f–f and f–d transitions of Sm2+ in matlockites. J Lumin 161:323–329CrossRef
61.
Zurück zum Zitat Monnier A, Schnieper M, Jaaniso R, Bill H (1997) Samarium-doped thin films of the matlockite structure: design, luminescence, and hole-burning experiments. J Appl Phys 82:536–547CrossRef Monnier A, Schnieper M, Jaaniso R, Bill H (1997) Samarium-doped thin films of the matlockite structure: design, luminescence, and hole-burning experiments. J Appl Phys 82:536–547CrossRef
62.
Zurück zum Zitat haj Hassan FE, Akbarzadeh H, Hashemifar SJ, Mokhtari A (2004) Structural and electronic properties of matlockite MFX (M = Sr, Ba, Pb; X = Cl, Br, I) compounds. J Phys Chem Solids 65:1871–1878CrossRef haj Hassan FE, Akbarzadeh H, Hashemifar SJ, Mokhtari A (2004) Structural and electronic properties of matlockite MFX (M = Sr, Ba, Pb; X = Cl, Br, I) compounds. J Phys Chem Solids 65:1871–1878CrossRef
63.
Zurück zum Zitat Mittal R, Chaplot SL, Sen A, Achary SN, Tyagi AK (2003) Lattice dynamics and inelastic neutron scattering studies of MFX (M = Ba, Sr, Pb; X = Cl, Br, I). Phys Rev B 67:134303CrossRef Mittal R, Chaplot SL, Sen A, Achary SN, Tyagi AK (2003) Lattice dynamics and inelastic neutron scattering studies of MFX (M = Ba, Sr, Pb; X = Cl, Br, I). Phys Rev B 67:134303CrossRef
64.
Zurück zum Zitat Riesen H, Kaczmarek WA (2007) Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor. Inorg Chem 46:7235–7237CrossRef Riesen H, Kaczmarek WA (2007) Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor. Inorg Chem 46:7235–7237CrossRef
65.
Zurück zum Zitat Riesen H, Badek K, Monro TM, Riesen N (2016) Highly efficient valence state switching of samarium in BaFCl: Sm nanocrystals in the deep UV for multilevel optical data storage. Opt Mater Express 6:3097–3108CrossRef Riesen H, Badek K, Monro TM, Riesen N (2016) Highly efficient valence state switching of samarium in BaFCl: Sm nanocrystals in the deep UV for multilevel optical data storage. Opt Mater Express 6:3097–3108CrossRef
66.
Zurück zum Zitat Liu Z, Stevens-Kalceff M, Riesen H (2012) Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor. J Phys Chem C 116:8322–8331CrossRef Liu Z, Stevens-Kalceff M, Riesen H (2012) Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor. J Phys Chem C 116:8322–8331CrossRef
67.
Zurück zum Zitat Riesen N, François A, Badek K, Monro TM, Riesen H (2015) Photoreduction of Sm3+ in nanocrystalline BaFCl. J Phys Chem A 119:6252–6256CrossRef Riesen N, François A, Badek K, Monro TM, Riesen H (2015) Photoreduction of Sm3+ in nanocrystalline BaFCl. J Phys Chem A 119:6252–6256CrossRef
68.
Zurück zum Zitat Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of Röntgen. Nachr. Ges. Wiss. Göttingen 2:96–100 Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of Röntgen. Nachr. Ges. Wiss. Göttingen 2:96–100
69.
Zurück zum Zitat Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef
72.
Zurück zum Zitat Urakaev FK (2013) Simulation of mechanically induced self-propagating reactions: density of the heat source due to the enthalpy of reaction. Combust Sci Technol 185:723–734CrossRef Urakaev FK (2013) Simulation of mechanically induced self-propagating reactions: density of the heat source due to the enthalpy of reaction. Combust Sci Technol 185:723–734CrossRef
73.
Zurück zum Zitat Liu Z, Stevens-Kalceff MA, Riesen H (2013) Effects of postannealing on the photoluminescence properties of coprecipitated nanocrystalline BaFCl:Sm3+. J Phys Chem A 117:1930–1934CrossRef Liu Z, Stevens-Kalceff MA, Riesen H (2013) Effects of postannealing on the photoluminescence properties of coprecipitated nanocrystalline BaFCl:Sm3+. J Phys Chem A 117:1930–1934CrossRef
74.
Zurück zum Zitat Radzhabov E, Otroshok V (1995) Optical spectra of oxygen defects in BaFCl and BaFBr crystals. J Phys Chem Solids 56:1–7CrossRef Radzhabov E, Otroshok V (1995) Optical spectra of oxygen defects in BaFCl and BaFBr crystals. J Phys Chem Solids 56:1–7CrossRef
75.
Zurück zum Zitat Eachus RS, Nuttall RHD, Olm MT, McDugle WG, Koschnick FK, Hangleiter T, Spaeth JM (1995) Oxygen defects in BaFBr and BaFCl. Phys Rev B 52:3941–3950CrossRef Eachus RS, Nuttall RHD, Olm MT, McDugle WG, Koschnick FK, Hangleiter T, Spaeth JM (1995) Oxygen defects in BaFBr and BaFCl. Phys Rev B 52:3941–3950CrossRef
76.
Zurück zum Zitat Riesen N, Pan X, Badek K et al (2018) Towards rewritable multilevel optical data storage in single nanocrystals. Opt Express 26:12266–12276CrossRef Riesen N, Pan X, Badek K et al (2018) Towards rewritable multilevel optical data storage in single nanocrystals. Opt Express 26:12266–12276CrossRef
77.
Zurück zum Zitat Kalpana G, Palanivel B, Shameem Banu IB, Rajagopalan M (1997) Structural and electronic properties of alkaline-earth fluorohalides under pressure. Phys Rev B 56:3532–3535CrossRef Kalpana G, Palanivel B, Shameem Banu IB, Rajagopalan M (1997) Structural and electronic properties of alkaline-earth fluorohalides under pressure. Phys Rev B 56:3532–3535CrossRef
78.
Zurück zum Zitat Wang XL, Liu ZQ, Stevens-Kalceff MA, Riesen H (2014) Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state. Inorg Chem 53:8839–8841CrossRef Wang XL, Liu ZQ, Stevens-Kalceff MA, Riesen H (2014) Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state. Inorg Chem 53:8839–8841CrossRef
79.
Zurück zum Zitat Zhang J, Riesen N, Riesen H (2017) Mechanochemically prepared SrFCl nanophosphor co-doped with Yb3+ and Er3+ for detecting ionizing radiation by upconversion luminescence. Nanoscale 9:15958–15966CrossRef Zhang J, Riesen N, Riesen H (2017) Mechanochemically prepared SrFCl nanophosphor co-doped with Yb3+ and Er3+ for detecting ionizing radiation by upconversion luminescence. Nanoscale 9:15958–15966CrossRef
80.
Zurück zum Zitat Riesen H (2006) Hole-burning spectroscopy of coordination compounds. Coord Chem Rev 250:1737–1754CrossRef Riesen H (2006) Hole-burning spectroscopy of coordination compounds. Coord Chem Rev 250:1737–1754CrossRef
81.
Zurück zum Zitat Urakaev FK (2016) Preparation of NaIn(WO4)2 nanocrystals and a charge for crystal growth via the free-of-rubbing mechanical activation of the Na2CO3 − In2O3 − WO3 system. Mendeleev Commun 26:546–548CrossRef Urakaev FK (2016) Preparation of NaIn(WO4)2 nanocrystals and a charge for crystal growth via the free-of-rubbing mechanical activation of the Na2CO3 − In2O3 − WO3 system. Mendeleev Commun 26:546–548CrossRef
82.
Zurück zum Zitat Fujita K, Yasumoto C, Hirao K (2002) Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses. J Lumin 98:317–323CrossRef Fujita K, Yasumoto C, Hirao K (2002) Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses. J Lumin 98:317–323CrossRef
83.
Zurück zum Zitat Mikhail P, Hulliger J, Schnieper M, Bill H (2000) SrB4O7: Sm2+: crystal chemistry, Czochralski growth and optical hole burning. J Mater Chem 10:987–991CrossRef Mikhail P, Hulliger J, Schnieper M, Bill H (2000) SrB4O7: Sm2+: crystal chemistry, Czochralski growth and optical hole burning. J Mater Chem 10:987–991CrossRef
84.
Zurück zum Zitat Zeng Q, Kilah N, Riley M, Riesen H (2003) Luminescence properties of Sm2+-activated barium chloroborates. J Lumin 104:65–76CrossRef Zeng Q, Kilah N, Riley M, Riesen H (2003) Luminescence properties of Sm2+-activated barium chloroborates. J Lumin 104:65–76CrossRef
85.
Zurück zum Zitat Winnacker A, Shelby RM, Macfarlane RM (1985) Photon-gated hole burning: a new mechanism using two-step photoionization. Opt Lett 10:350–352CrossRef Winnacker A, Shelby RM, Macfarlane RM (1985) Photon-gated hole burning: a new mechanism using two-step photoionization. Opt Lett 10:350–352CrossRef
86.
Zurück zum Zitat Cho D-H, Hirao K, Fujita K, Soga N (1996) Photochemical hole burning and local structural change in Sm2+-doped borate glasses. J Am Ceram Soc 79:327–332CrossRef Cho D-H, Hirao K, Fujita K, Soga N (1996) Photochemical hole burning and local structural change in Sm2+-doped borate glasses. J Am Ceram Soc 79:327–332CrossRef
87.
Zurück zum Zitat Qin W, Chen ZH, Huang PY, Zhuang YH (1999) Crystal lattice expansion of nanocrystalline materials. J Alloys Compd 292:230–232CrossRef Qin W, Chen ZH, Huang PY, Zhuang YH (1999) Crystal lattice expansion of nanocrystalline materials. J Alloys Compd 292:230–232CrossRef
88.
Zurück zum Zitat Fukuhara M (2003) Lattice expansion of nanoscale compound particles. Phys Lett A 313:427–430CrossRef Fukuhara M (2003) Lattice expansion of nanoscale compound particles. Phys Lett A 313:427–430CrossRef
89.
Zurück zum Zitat Manuel DP, Péter Á, Karsten A (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13:2443–2454CrossRef Manuel DP, Péter Á, Karsten A (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13:2443–2454CrossRef
90.
Zurück zum Zitat Liu Z, Massil T, Riesen H (2010) Spectral hole-burning properties of Sm2+ ions generated by X-rays in BaFCl: Sm3+ nanocrystals. Phys Proced 3:1539–1545CrossRef Liu Z, Massil T, Riesen H (2010) Spectral hole-burning properties of Sm2+ ions generated by X-rays in BaFCl: Sm3+ nanocrystals. Phys Proced 3:1539–1545CrossRef
91.
Zurück zum Zitat Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829CrossRef Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829CrossRef
92.
Zurück zum Zitat Han S, Deng R, Xie X, Liu X (2014) Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed 53:11702–11715CrossRef Han S, Deng R, Xie X, Liu X (2014) Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed 53:11702–11715CrossRef
93.
Zurück zum Zitat Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465CrossRef Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465CrossRef
94.
Zurück zum Zitat Wang Z, Li Y, Jiang Q, Zeng H, Ci Z, Sun L (2014) Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles. J Mater Chem C 2:4495–4501CrossRef Wang Z, Li Y, Jiang Q, Zeng H, Ci Z, Sun L (2014) Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles. J Mater Chem C 2:4495–4501CrossRef
95.
Zurück zum Zitat Carlos LD, Ferreira RAS, de Zea Bermudez V, Julian-Lopez B, Escribano P (2011) Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev 40:536–549CrossRef Carlos LD, Ferreira RAS, de Zea Bermudez V, Julian-Lopez B, Escribano P (2011) Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev 40:536–549CrossRef
96.
Zurück zum Zitat Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5:1369–1384CrossRef Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5:1369–1384CrossRef
97.
Zurück zum Zitat Zheng K, Liu Z, Lv C, Qin W (2013) Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals. J Mater Chem C 1:5502–5507CrossRef Zheng K, Liu Z, Lv C, Qin W (2013) Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals. J Mater Chem C 1:5502–5507CrossRef
98.
Zurück zum Zitat Liu Q, Feng W, Li F (2014) Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord Chem Rev 273–274:100–110CrossRef Liu Q, Feng W, Li F (2014) Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord Chem Rev 273–274:100–110CrossRef
99.
Zurück zum Zitat Zhang J, Riesen H (2015) Mechanochemical preparation of nanocrystalline NaYF4:Gd3+/Yb3+/Tm3+: an efficient upconversion phosphor. Chem Phys Lett 641:1–4CrossRef Zhang J, Riesen H (2015) Mechanochemical preparation of nanocrystalline NaYF4:Gd3+/Yb3+/Tm3+: an efficient upconversion phosphor. Chem Phys Lett 641:1–4CrossRef
100.
Zurück zum Zitat Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A 5:11462–11482CrossRef Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A 5:11462–11482CrossRef
101.
Zurück zum Zitat Park N-G (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72CrossRef Park N-G (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72CrossRef
102.
Zurück zum Zitat Protesescu L, Yakunin S, Bodnarchuk MI et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696CrossRef Protesescu L, Yakunin S, Bodnarchuk MI et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696CrossRef
103.
Zurück zum Zitat Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281CrossRef Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281CrossRef
104.
Zurück zum Zitat Elseman AM, Rashad MM, Hassan AM (2016) Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain Chem Eng 4:4875–4886CrossRef Elseman AM, Rashad MM, Hassan AM (2016) Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain Chem Eng 4:4875–4886CrossRef
Metadaten
Titel
Mechanochemical preparation of nanocrystalline metal halide phosphors
verfasst von
Jun Zhang
Nicolas Riesen
Lubina Thattamveedu Kasim
Kate Badek
Hans Riesen
Publikationsdatum
19.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2559-y

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science 19/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.