Skip to main content
Erschienen in: Rare Metals 12/2022

19.12.2015

Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture

verfasst von: Zhi-Nian Li, Hao-Chen Qiu, Shu-Mao Wang, Li-Jun Jiang, Jun Du, Jun-Xian Zhang, Michel Latroche, Fermin Cuevas

Erschienen in: Rare Metals | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Li–Mg–N–H hydrogen storage system is a promising hydrogen storage material due to its moderate operation temperature, good reversibility, and relatively high capacity. In this work, the Li–Mg–N–H composite was directly synthesized by reactive ball milling (RBM) of Li3N and Mg powder mixture with a molar ratio of 2:1 under hydrogen pressure of 9 MPa. More than 8.8 wt% hydrogen was absorbed during the RBM process. The phases and structural evolution during the in situ hydrogenation process were analyzed by means of in situ solid–gas absorption and ex situ X-ray diffraction (XRD) measurements. It is determined that the hydrogenation can be divided into two steps, leading to mainly the formation of a lithium magnesium imide phase and a poorly crystallized amide phase, respectively. The H-cycling properties of the as-milled composite were determined by temperature-programmed dehydrogenation (TPD) method in a closed system. The onset dehydrogenation temperature was detected at 125 °C, and it can reversibly desorb 3.1 wt% hydrogen under a hydrogen back pressure of 0.2 MPa. The structural evolution during dehydrogenation was further investigated by in situ XRD measurement. It is found that Mg(NH2)2 phase disappears at about 200 °C, and Li2Mg2N3H3, LiNH2, and Li2MgN2H2 phases coexist at even 300 °C, revealing that the dehydrogenation process is step-wised and only partial hydrogen can be desorbed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Crabtree G, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today. 2004;57(12):39.CrossRef Crabtree G, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today. 2004;57(12):39.CrossRef
[2]
Zurück zum Zitat Zhou L. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev. 2005;9(4):395.CrossRef Zhou L. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev. 2005;9(4):395.CrossRef
[3]
Zurück zum Zitat Chen P, Xiong ZT, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420(6913):302.CrossRef Chen P, Xiong ZT, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420(6913):302.CrossRef
[4]
Zurück zum Zitat Luo WF. (LiNH2–MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381(1–2):284.CrossRef Luo WF. (LiNH2–MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381(1–2):284.CrossRef
[5]
Zurück zum Zitat Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;16(17):522.CrossRef Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;16(17):522.CrossRef
[6]
Zurück zum Zitat Sudik A, Yang J, Halliday D, Wolverton C. Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C. 2007;111(17):6568.CrossRef Sudik A, Yang J, Halliday D, Wolverton C. Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C. 2007;111(17):6568.CrossRef
[7]
Zurück zum Zitat Zhu XL, Zhao X, Li Y, Liu BZ. Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride. Rare Met. 2014;33(1):86.CrossRef Zhu XL, Zhao X, Li Y, Liu BZ. Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride. Rare Met. 2014;33(1):86.CrossRef
[8]
Zurück zum Zitat Wang JC, Li HL, Wang SM, Liu XP, Li Y, Jiang LJ. The desorption kinetics of the Mg(NH2)2 + LiH mixture. Int J Hydrog Energy. 2009;34(3):1411.CrossRef Wang JC, Li HL, Wang SM, Liu XP, Li Y, Jiang LJ. The desorption kinetics of the Mg(NH2)2 + LiH mixture. Int J Hydrog Energy. 2009;34(3):1411.CrossRef
[9]
Zurück zum Zitat Wang Y, Xu CC, Li J, Wang YJ, Jiang LF, Yuan H. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55. Wang Y, Xu CC, Li J, Wang YJ, Jiang LF, Yuan H. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55.
[10]
Zurück zum Zitat Xia L, Zhu S. Progress in high capacity hydrogen storage material of LiBH4. Chin J Rare Met. 2014;38(3):509. Xia L, Zhu S. Progress in high capacity hydrogen storage material of LiBH4. Chin J Rare Met. 2014;38(3):509.
[11]
Zurück zum Zitat Cao HJ, Wang H, He T, Wu GT, Xiong ZT, Qiu JS, Chen P. Improved kinetics of the Mg(NH2)2-2LiH system by addition of lithium halides. RSC Adv. 2014;4(61):32555.CrossRef Cao HJ, Wang H, He T, Wu GT, Xiong ZT, Qiu JS, Chen P. Improved kinetics of the Mg(NH2)2-2LiH system by addition of lithium halides. RSC Adv. 2014;4(61):32555.CrossRef
[12]
Zurück zum Zitat Gamba NS, Larochette PA, Gennari FC. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2-2LiH composite. RSC Adv. 2015;5(84):68542.CrossRef Gamba NS, Larochette PA, Gennari FC. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2-2LiH composite. RSC Adv. 2015;5(84):68542.CrossRef
[13]
Zurück zum Zitat Rachel FB, Daniel R, David B, Paul AA. Effect of the calcium halides, CaCl2 and CaBr2, on hydrogen desorption in the Li-Mg-N-H system. J Alloys Compd. 2015;645(S1):S96. Rachel FB, Daniel R, David B, Paul AA. Effect of the calcium halides, CaCl2 and CaBr2, on hydrogen desorption in the Li-Mg-N-H system. J Alloys Compd. 2015;645(S1):S96.
[14]
Zurück zum Zitat Jalaal H, Andrew G. Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. Int J Hydrog Energy. 2015;40(36):12336.CrossRef Jalaal H, Andrew G. Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. Int J Hydrog Energy. 2015;40(36):12336.CrossRef
[15]
Zurück zum Zitat Tolulope D, Jalaal H, Andrew G. Rubidium hydride: potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrog Energy. 2015;40(5):2266.CrossRef Tolulope D, Jalaal H, Andrew G. Rubidium hydride: potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrog Energy. 2015;40(5):2266.CrossRef
[16]
Zurück zum Zitat Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.CrossRef Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.CrossRef
[17]
Zurück zum Zitat Zhang XG, Li ZN, Wang SM, Mi J, Jiang LJ, Lv F, Liu XP. Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. J Rare Earths. 2011;29(6):599.CrossRef Zhang XG, Li ZN, Wang SM, Mi J, Jiang LJ, Lv F, Liu XP. Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. J Rare Earths. 2011;29(6):599.CrossRef
[18]
Zurück zum Zitat Zhao W, Jiang LJ, Wu YF, Ye JH, Yuan BL, Li ZN, Liu XP, Wang SM. Improved dehydrogenation cycle performance of the 1.1MgH2-2LiNH2-0.1LiBH4 system by addition of LaNi4.5Mn0.5 alloy. J Rare Earths. 2015;33(7):783.CrossRef Zhao W, Jiang LJ, Wu YF, Ye JH, Yuan BL, Li ZN, Liu XP, Wang SM. Improved dehydrogenation cycle performance of the 1.1MgH2-2LiNH2-0.1LiBH4 system by addition of LaNi4.5Mn0.5 alloy. J Rare Earths. 2015;33(7):783.CrossRef
[19]
Zurück zum Zitat Chen P, Xiong ZT, Yang L, Wu GT, Luo WF. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B. 2006;110(29):14221.CrossRef Chen P, Xiong ZT, Yang L, Wu GT, Luo WF. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B. 2006;110(29):14221.CrossRef
[20]
Zurück zum Zitat Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef
[21]
Zurück zum Zitat Liang C, Liu Y, Luo K, Li B, Gao M, Pan H, Wang Q. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem Eur J. 2008;16(2):693.CrossRef Liang C, Liu Y, Luo K, Li B, Gao M, Pan H, Wang Q. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem Eur J. 2008;16(2):693.CrossRef
[22]
Zurück zum Zitat Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction. J Power Sources. 2006;159(1):81.CrossRef Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction. J Power Sources. 2006;159(1):81.CrossRef
[23]
Zurück zum Zitat Li ZN, Zhang JX, Wang SM, Jiang LJ, Latroche M, Du J, Cuevas F. Mechanochemistry of lithium nitride under hydrogen gas. Phys Chem Chem Phys. 2015;17(34):21927.CrossRef Li ZN, Zhang JX, Wang SM, Jiang LJ, Latroche M, Du J, Cuevas F. Mechanochemistry of lithium nitride under hydrogen gas. Phys Chem Chem Phys. 2015;17(34):21927.CrossRef
[24]
Zurück zum Zitat Zhang B, Wu Y. Hydrogen absorption-desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrog Energy. 2014;39(25):13603.CrossRef Zhang B, Wu Y. Hydrogen absorption-desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrog Energy. 2014;39(25):13603.CrossRef
[25]
Zurück zum Zitat Zhang B, Wu Y. Effects of additives on the microstructure and hydrogen storage properties of the Li3N-MgH2 mixture. J Alloys Compd. 2014;613(15):199. Zhang B, Wu Y. Effects of additives on the microstructure and hydrogen storage properties of the Li3N-MgH2 mixture. J Alloys Compd. 2014;613(15):199.
[26]
Zurück zum Zitat Doppiu S, Schultz L, Gutfleisch O. In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloy Compd. 2007;427(1–2):204.CrossRef Doppiu S, Schultz L, Gutfleisch O. In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloy Compd. 2007;427(1–2):204.CrossRef
[27]
Zurück zum Zitat Zhang JX, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM=Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRef Zhang JX, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM=Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRef
[28]
Zurück zum Zitat Hemmes H, Driessen A, Griessen R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J Phys C Solid State Phys. 1986;19(19):3571.CrossRef Hemmes H, Driessen A, Griessen R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J Phys C Solid State Phys. 1986;19(19):3571.CrossRef
[29]
Zurück zum Zitat Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse; 1990. 237. Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse; 1990. 237.
[30]
Zurück zum Zitat Calder RS, Cochran W, Griffiths D, Lowde RD. An X-ray and neutron diffraction analysis of lithium hydride. J Phys Chem Solids. 1962;23(6):621.CrossRef Calder RS, Cochran W, Griffiths D, Lowde RD. An X-ray and neutron diffraction analysis of lithium hydride. J Phys Chem Solids. 1962;23(6):621.CrossRef
[31]
Zurück zum Zitat Sorby MH, Nakamura Y, Brinks HW, Ichikawa T, Hino S, Fujii H, Hauback BC. The crystal structure of LiND2 and Mg(ND2)2. J Alloys Compd. 2007;428(1–2):297.CrossRef Sorby MH, Nakamura Y, Brinks HW, Ichikawa T, Hino S, Fujii H, Hauback BC. The crystal structure of LiND2 and Mg(ND2)2. J Alloys Compd. 2007;428(1–2):297.CrossRef
[32]
Zurück zum Zitat David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc. 2007;129(6):1594.CrossRef David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc. 2007;129(6):1594.CrossRef
[33]
Zurück zum Zitat Linde G, Juza R. Ir spectra of amides and imides of divalent and Trivalent Metals. Z Anorg Allg Chem. 1974;409(2):199.CrossRef Linde G, Juza R. Ir spectra of amides and imides of divalent and Trivalent Metals. Z Anorg Allg Chem. 1974;409(2):199.CrossRef
[34]
Zurück zum Zitat Bohger JPO, Essmann RR, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide. J Mol Struct. 1995;348(2):325.CrossRef Bohger JPO, Essmann RR, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide. J Mol Struct. 1995;348(2):325.CrossRef
[35]
Zurück zum Zitat Hu J, Liu Y, Wu G, Xiong Z, Chen P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C. 2007;111(49):18439.CrossRef Hu J, Liu Y, Wu G, Xiong Z, Chen P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C. 2007;111(49):18439.CrossRef
[36]
Zurück zum Zitat Beister HJ, Haag S, Kniep R, Strössner K, Syassen K. Phase transformations of lithium nitride under pressure. Angew Chem Int Ed Engl. 1988;27(8):1101.CrossRef Beister HJ, Haag S, Kniep R, Strössner K, Syassen K. Phase transformations of lithium nitride under pressure. Angew Chem Int Ed Engl. 1988;27(8):1101.CrossRef
[37]
Zurück zum Zitat Ohoyama K, Nakamori Y, Orimo S, Yamada K. Revised crystal structure model of Li2NH by neutron powder diffraction. J Phys Soc Jpn. 2005;74(1):483.CrossRef Ohoyama K, Nakamori Y, Orimo S, Yamada K. Revised crystal structure model of Li2NH by neutron powder diffraction. J Phys Soc Jpn. 2005;74(1):483.CrossRef
[38]
Zurück zum Zitat Rijssenbeek J, Gao Y, Hanson J, Huang Q, Jones C, Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J Alloys Compd. 2008;454(1–2):233.CrossRef Rijssenbeek J, Gao Y, Hanson J, Huang Q, Jones C, Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J Alloys Compd. 2008;454(1–2):233.CrossRef
Metadaten
Titel
Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture
verfasst von
Zhi-Nian Li
Hao-Chen Qiu
Shu-Mao Wang
Li-Jun Jiang
Jun Du
Jun-Xian Zhang
Michel Latroche
Fermin Cuevas
Publikationsdatum
19.12.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 12/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0674-3

Weitere Artikel der Ausgabe 12/2022

Rare Metals 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.