Skip to main content
Erschienen in: Environmental Management 2/2019

11.01.2019

Meeting Water Quality Goals by Spatial Targeting of Best Management Practices under Climate Change

verfasst von: Yuelu Xu, Darrell J. Bosch, Moges B. Wagena, Amy S. Collick, Zachary M. Easton

Erschienen in: Environmental Management | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Agricultural production is a major source of nonpoint source pollution contributing 44% of total nitrogen (N) discharged to the Chesapeake Bay. The United States Environmental Protection Agency (US EPA) established the Total Maximum Daily Load (TMDL) program to control this problem. For the Chesapeake Bay watershed, the TMDL program requires that nitrogen loadings be reduced by 25% by 2025. Climate change may affect the cost of achieving such reductions. Thus, it is necessary to develop cost-effective strategies to meet water quality goals under climate change. We investigate landscape targeting of best management practices (BMPs) based on topographic index (TI) to determine how targeting would affect costs of meeting N loading goals for Mahantango watershed, PA. We use the results from two climate models, CRCM and WRFG, and the mean of the ensemble of seven climate models (Ensemble Mean) to estimate expected climate changes and the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model to predict crop yields and N export. Costs of targeting and uniform placement of BMPs across the entire study area (423 ha) were compared under historical and future climate scenarios. Targeting BMP placement based on TI classes reduces costs for achieving water quality goals relative to uniform placement strategies under historical and future conditions. Compared with uniform placement, targeting methods reduce costs by 30, 34, and 27% under historical climate as estimated by the Ensemble Mean, CRCM and WRFG, respectively, and by 37, 43, and 33% under the corresponding estimates of future climate scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Results of this study are based on the assumption of the farm profit maximization. In some cases actual crop and BMP choices observed in the watershed may deviate from those predicted by profit maximization.
 
Literatur
Zurück zum Zitat Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1491–1508CrossRef Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1491–1508CrossRef
Zurück zum Zitat Azzaino Z, Conrad JM, Ferraro PJ (2002) Optimizing the riparian buffer: Harold Brook in the Skaneateles Lake Watershed, New York. Land Econ 78(4):501–514CrossRef Azzaino Z, Conrad JM, Ferraro PJ (2002) Optimizing the riparian buffer: Harold Brook in the Skaneateles Lake Watershed, New York. Land Econ 78(4):501–514CrossRef
Zurück zum Zitat Bosch DJ et al. (2018) Meeting water quality goals under climate change in Chesapeake Bay watershed, USA. Journal of the American Water Resources Association 54(6):1239–1257CrossRef Bosch DJ et al. (2018) Meeting water quality goals under climate change in Chesapeake Bay watershed, USA. Journal of the American Water Resources Association 54(6):1239–1257CrossRef
Zurück zum Zitat Collick AS et al. (2015) Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrol Process 29(4):588–601CrossRef Collick AS et al. (2015) Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrol Process 29(4):588–601CrossRef
Zurück zum Zitat Cools J et al. (2011) Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environ Model & Softw 26(1):44–51CrossRef Cools J et al. (2011) Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environ Model & Softw 26(1):44–51CrossRef
Zurück zum Zitat Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5(3):703–723CrossRef Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5(3):703–723CrossRef
Zurück zum Zitat Dillaha TA, Simpson TW, Weammert SE (2009) Offstream watering with fencing and offstream watering without fencing practices. Final Report December 2009, p 414 Dillaha TA, Simpson TW, Weammert SE (2009) Offstream watering with fencing and offstream watering without fencing practices. Final Report December 2009, p 414
Zurück zum Zitat Easton ZM et al. (2008) Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J Hydrol 348(3):279–291CrossRef Easton ZM et al. (2008) Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J Hydrol 348(3):279–291CrossRef
Zurück zum Zitat FAO (2007) State of the World’s Forests 2007. Food & Agriculture Org FAO (2007) State of the World’s Forests 2007. Food & Agriculture Org
Zurück zum Zitat Giri S, Nejadhashemi AP, Woznicki SA (2012) Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J. Environ. Manag. 103:24–40CrossRef Giri S, Nejadhashemi AP, Woznicki SA (2012) Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J. Environ. Manag. 103:24–40CrossRef
Zurück zum Zitat Giri S et al. (2014) Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrol Process 28(3):431–445CrossRef Giri S et al. (2014) Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrol Process 28(3):431–445CrossRef
Zurück zum Zitat Jeppesen E et al. (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21CrossRef Jeppesen E et al. (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21CrossRef
Zurück zum Zitat Jha MK et al. (2010) Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. J Soil Water Conserv 65(6):342–352CrossRef Jha MK et al. (2010) Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. J Soil Water Conserv 65(6):342–352CrossRef
Zurück zum Zitat Khanna M, Yang W, Farnsworth R, Önal H (2003) Cost-effective targeting of land retirement to improve water quality with endogenous sediment deposition coefficients. Am J Agric Econ 85(3):538–553CrossRef Khanna M, Yang W, Farnsworth R, Önal H (2003) Cost-effective targeting of land retirement to improve water quality with endogenous sediment deposition coefficients. Am J Agric Econ 85(3):538–553CrossRef
Zurück zum Zitat Kosten S et al. (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126CrossRef Kosten S et al. (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126CrossRef
Zurück zum Zitat Mearns LO et al. (2009) A regional climate change assessment program for North America. EOS, Trans Am Geophys Union 90(36):311–311CrossRef Mearns LO et al. (2009) A regional climate change assessment program for North America. EOS, Trans Am Geophys Union 90(36):311–311CrossRef
Zurück zum Zitat Nakicenovic N et al. (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge, UK. Cambridge University Press Nakicenovic N et al. (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge, UK. Cambridge University Press
Zurück zum Zitat Nutrient Management Expert Panel (2015) Nutrient management: Recommendations for approval by the Water Quality Goal Implementation Team’s Watershed Technical and Agricultural Workgroups. Phase 5.3.2. Chesapeake Bay Program, Annapolis, Maryland Nutrient Management Expert Panel (2015) Nutrient management: Recommendations for approval by the Water Quality Goal Implementation Team’s Watershed Technical and Agricultural Workgroups. Phase 5.3.2. Chesapeake Bay Program, Annapolis, Maryland
Zurück zum Zitat Penn State (2015) The Agronomy Guide 2015–2016. College of Agricultural Science. State College, Pennsylvania Penn State (2015) The Agronomy Guide 2015–2016. College of Agricultural Science. State College, Pennsylvania
Zurück zum Zitat Rao NS et al. (2009) Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J Environ Manag 90(3):1385–1395CrossRef Rao NS et al. (2009) Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J Environ Manag 90(3):1385–1395CrossRef
Zurück zum Zitat Rhodes JL et al. (2011) Broiler production management for potential and existing growers. University of Maryland Extension Bulletin, College Park, Maryland. >https://extension.umd.edu//sites/extension.umd.edu/files/_docs/POULTRY_BroilerProductionManagement_final1.pdf Rhodes JL et al. (2011) Broiler production management for potential and existing growers. University of Maryland Extension Bulletin, College Park, Maryland. >https://​extension.​umd.​edu/​/​sites/​extension.​umd.​edu/​files/​_​docs/​POULTRY_​BroilerProductio​nManagement_​final1.​pdf
Zurück zum Zitat Ritter WF, Scarborough RW, Chirnside AEM (1998) Winter cover crops as a best management practice for reducing nitrogen leaching. J Contam Hydrol 34(1):1–15CrossRef Ritter WF, Scarborough RW, Chirnside AEM (1998) Winter cover crops as a best management practice for reducing nitrogen leaching. J Contam Hydrol 34(1):1–15CrossRef
Zurück zum Zitat Stubbs M (2014) Conservation Reserve Program (CRP): Status and issues. Congressional Research Service Report, 42783, 24p Stubbs M (2014) Conservation Reserve Program (CRP): Status and issues. Congressional Research Service Report, 42783, 24p
Zurück zum Zitat United States Environmental Protection Agency (USEPA) (2010b) Chesapeake Bay Total Maximum Daily Load for nitrogen, phosphorus, and sediment. USEPA Region III. Philadelphia, PA. Phase 1 document: Commonwealth of Virginia Chesapeake Bay TMDL Phase I Watershed Implementation Plan Revision of the Chesapeake Bay Nutrient and Sediment Reduction Tributary Strategy November 29. USEPA United States Environmental Protection Agency (USEPA) (2010b) Chesapeake Bay Total Maximum Daily Load for nitrogen, phosphorus, and sediment. USEPA Region III. Philadelphia, PA. Phase 1 document: Commonwealth of Virginia Chesapeake Bay TMDL Phase I Watershed Implementation Plan Revision of the Chesapeake Bay Nutrient and Sediment Reduction Tributary Strategy November 29. USEPA
Zurück zum Zitat Van Houtven G et al. (2012) Nutrient credit trading for the Chesapeake Bay: An economic study. RTI International, Research Triangle Park, NC Van Houtven G et al. (2012) Nutrient credit trading for the Chesapeake Bay: An economic study. RTI International, Research Triangle Park, NC
Zurück zum Zitat Wagena MB et al. (2018) Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Sci Total Environ 637:1443–1454CrossRef Wagena MB et al. (2018) Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Sci Total Environ 637:1443–1454CrossRef
Zurück zum Zitat Wagena MB, Easton ZM (2018) Agricultural conservation practices can help mitigate the impact of climate change. Sci Total Environ 635:132–143CrossRef Wagena MB, Easton ZM (2018) Agricultural conservation practices can help mitigate the impact of climate change. Sci Total Environ 635:132–143CrossRef
Zurück zum Zitat Walthall CL et al. (2013) Climate change and agriculture in the United States: Effects and adaptation. USDA Technical Bulletin 1935, Washington DC, p 186 Walthall CL et al. (2013) Climate change and agriculture in the United States: Effects and adaptation. USDA Technical Bulletin 1935, Washington DC, p 186
Zurück zum Zitat Willis DB, Privette C (2017) A cost effective modeling approach for targeting the location of best management practices within a rapidly growing urban watershed to achieve regional water quality standards. In 2017 Annual Meeting, 4–7 February 2017, Mobile, Alabama (No. 252820). Southern Agricultural Economics Association Willis DB, Privette C (2017) A cost effective modeling approach for targeting the location of best management practices within a rapidly growing urban watershed to achieve regional water quality standards. In 2017 Annual Meeting, 4–7 February 2017, Mobile, Alabama (No. 252820). Southern Agricultural Economics Association
Zurück zum Zitat Wu J et al. (2006) A water quality based approach for watershed wide BMP strategies. J Am Water Resour Assoc 42(5):1193–1204CrossRef Wu J et al. (2006) A water quality based approach for watershed wide BMP strategies. J Am Water Resour Assoc 42(5):1193–1204CrossRef
Zurück zum Zitat Yang W, Weersink A (2004) Cost-effective targeting of riparian buffers. Can J Agric Econ/Rev Can d’agroeconomie 52(1):17–34CrossRef Yang W, Weersink A (2004) Cost-effective targeting of riparian buffers. Can J Agric Econ/Rev Can d’agroeconomie 52(1):17–34CrossRef
Zurück zum Zitat Yang W et al. (2005) Spatial targeting of conservation tillage to improve water quality and carbon retention benefits. Can J Agric Econ/Rev Can d’agroeconomie 53(4):477–500CrossRef Yang W et al. (2005) Spatial targeting of conservation tillage to improve water quality and carbon retention benefits. Can J Agric Econ/Rev Can d’agroeconomie 53(4):477–500CrossRef
Zurück zum Zitat Yang W, Liu W, Liu Y, Corry RC, Kreutzwiser RD (2014) Cost-effective targeting ofriparian buffers to achieve water quality and wildlife habitat benefits. International Journal of River Basin Management 12(1):43–55CrossRef Yang W, Liu W, Liu Y, Corry RC, Kreutzwiser RD (2014) Cost-effective targeting ofriparian buffers to achieve water quality and wildlife habitat benefits. International Journal of River Basin Management 12(1):43–55CrossRef
Metadaten
Titel
Meeting Water Quality Goals by Spatial Targeting of Best Management Practices under Climate Change
verfasst von
Yuelu Xu
Darrell J. Bosch
Moges B. Wagena
Amy S. Collick
Zachary M. Easton
Publikationsdatum
11.01.2019
Verlag
Springer US
Erschienen in
Environmental Management / Ausgabe 2/2019
Print ISSN: 0364-152X
Elektronische ISSN: 1432-1009
DOI
https://doi.org/10.1007/s00267-018-01133-8

Weitere Artikel der Ausgabe 2/2019

Environmental Management 2/2019 Zur Ausgabe