Skip to main content

2015 | OriginalPaper | Buchkapitel

18. Membrane Processes for Microalgae in Carbonation and Wastewater Treatment

verfasst von : Rosalam Sarbatly, Emma Suali, Farhana Abd Lahin, Chel-Ken Chiam

Erschienen in: Advances in Bioprocess Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this work is to present the integration of membrane processes in the field of bioenergy resource and wastewater treatment using microalgae. There are two main processes involved: carbonation and separation, which were conducted and reported as a separated work within this chapter. The chapter begins with the introduction of membrane processes, followed by carbonation of microalgae and separation of biomass from the wastewater effluent. The experimental work on the carbonation aims to evaluate the effectiveness of hydrophobic hollow fibre membrane in transporting CO2 into microalgae culture and microalgae accumulation within the membrane. The experimental work on the separation process of microalgae biomass from the wastewater effluent on the other hand, aims to evaluate Ultrafiltration (UF) membrane capability in removing BOD and COD as well as its ability to retain microalgae biomass which were used by the turbidity reading of the membrane permeate. The application of hydrophobic membrane in the carbonation process has increased the carbonation efficiency up to 83 % in comparison with the carbonation without membrane and only a small amount of mirage was accumulated within the membrane. The experimental result also shows that, the carbonised microalgae can be further used for wastewater treatment. Based on the result of separation process of microalgae biomass of wastewater effluent, the UF membrane utilization shows high separation efficiency in turbidity to lower than 5 Fau, and was able to facilitate in nutrient removal for less time required compared to the biological treatment without application of the membrane.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., & Lim, J. K. (2012). Cross flow microfiltration of microalgae biomass for biofuel production. Desalination, 302, 65–70.CrossRef Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., & Lim, J. K. (2012). Cross flow microfiltration of microalgae biomass for biofuel production. Desalination, 302, 65–70.CrossRef
Zurück zum Zitat Anselme, C., Mandra, V., Baudin, I., & Mallevialle, J. (1993). Optimum use of membrane processes in drinking water treatment. Water Supply, 12, 1–2. Anselme, C., Mandra, V., Baudin, I., & Mallevialle, J. (1993). Optimum use of membrane processes in drinking water treatment. Water Supply, 12, 1–2.
Zurück zum Zitat Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.CrossRef Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.CrossRef
Zurück zum Zitat Babel, S., Takizawa, S., & Ozaki, H. (2002). Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Research, 36, 1193–1202.CrossRef Babel, S., Takizawa, S., & Ozaki, H. (2002). Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Research, 36, 1193–1202.CrossRef
Zurück zum Zitat Babel, S., & Takizawa, S. (2010). Microfiltration membrane fouling and cake behaviour during algal filtration. Desalination, 261, 46–51.CrossRef Babel, S., & Takizawa, S. (2010). Microfiltration membrane fouling and cake behaviour during algal filtration. Desalination, 261, 46–51.CrossRef
Zurück zum Zitat Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.CrossRef Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.CrossRef
Zurück zum Zitat Caldwell, D. H. (1946). Sewage oxidation ponds-performance, operation and design. Sewage Works Journal, 18, 433–458. Caldwell, D. H. (1946). Sewage oxidation ponds-performance, operation and design. Sewage Works Journal, 18, 433–458.
Zurück zum Zitat Castaing, J. B., Massé, A., Pontie, M., Sechet, V., Haure, J., & Jaouen, P. (2010). Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. Desalination, 253, 71–77.CrossRef Castaing, J. B., Massé, A., Pontie, M., Sechet, V., Haure, J., & Jaouen, P. (2010). Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. Desalination, 253, 71–77.CrossRef
Zurück zum Zitat Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109(83–94), 84–93. Chen, C. Y., & Durbin, E. G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109(83–94), 84–93.
Zurück zum Zitat Chen, V., Fane, A. G., Madaeni, S., & Wenten, I. G. (1997). Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation. Journal of Membrane Science, 125, 109–122.CrossRef Chen, V., Fane, A. G., Madaeni, S., & Wenten, I. G. (1997). Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation. Journal of Membrane Science, 125, 109–122.CrossRef
Zurück zum Zitat Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.CrossRef Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.CrossRef
Zurück zum Zitat Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.CrossRef Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.CrossRef
Zurück zum Zitat Choi, H., Zhang, K., Doinysiou, D. D., Oether, D. B., & Sorial, G. A. (2005). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. Journal of Membrane Science, 248, 189–199.CrossRef Choi, H., Zhang, K., Doinysiou, D. D., Oether, D. B., & Sorial, G. A. (2005). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. Journal of Membrane Science, 248, 189–199.CrossRef
Zurück zum Zitat Chow, C. W. K., Panglisch, S., House, J., et al. (1997). A study of membrane filtration for the removal of cyanobacterial cells. Journal of Water SRT—Aqua, 46(6), 324–334. Chow, C. W. K., Panglisch, S., House, J., et al. (1997). A study of membrane filtration for the removal of cyanobacterial cells. Journal of Water SRT—Aqua, 46(6), 324–334.
Zurück zum Zitat Craggs, R. J., McAuley, P. J., & Smith, J. V. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Resources, 31(7), 1701–1707. Craggs, R. J., McAuley, P. J., & Smith, J. V. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Resources, 31(7), 1701–1707.
Zurück zum Zitat Davis, M. L., & Masten, S. J. (2004). Principles of Environmental Engineering and Science (p. 704). New York: McGraw-Hill Higher Education. Davis, M. L., & Masten, S. J. (2004). Principles of Environmental Engineering and Science (p. 704). New York: McGraw-Hill Higher Education.
Zurück zum Zitat Davis, R., Aden, A., & Pienkos, P. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88, 3524–3531.CrossRef Davis, R., Aden, A., & Pienkos, P. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88, 3524–3531.CrossRef
Zurück zum Zitat Drews, A., Lee, C. H., & Kraume, M. (2006). Membrane fouling—A review on the role of EPS. Desalination, 200, 186–188.CrossRef Drews, A., Lee, C. H., & Kraume, M. (2006). Membrane fouling—A review on the role of EPS. Desalination, 200, 186–188.CrossRef
Zurück zum Zitat Drioli, E., & Paul, D. R. (2007). Preface: Advanced membrane technology III—Membrane engineering for process intensification conference. Industrial and Engineering Chemistry Research, 46, 2235.CrossRef Drioli, E., & Paul, D. R. (2007). Preface: Advanced membrane technology III—Membrane engineering for process intensification conference. Industrial and Engineering Chemistry Research, 46, 2235.CrossRef
Zurück zum Zitat Frappart, M., Masse, A., Jaffrin, M. Y., Pruvost, J., & Jaouen, P. (2011). Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination, 265, 279–283.CrossRef Frappart, M., Masse, A., Jaffrin, M. Y., Pruvost, J., & Jaouen, P. (2011). Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination, 265, 279–283.CrossRef
Zurück zum Zitat Gantar, M., Obreht, Z., & Dalmacija, B. (1991). Nutrient removal and algal succession during the growth of spirulina plantensis and scenedesmus quadricauda on swine wastewater. Bioresource Technology, 36, 167–171.CrossRef Gantar, M., Obreht, Z., & Dalmacija, B. (1991). Nutrient removal and algal succession during the growth of spirulina plantensis and scenedesmus quadricauda on swine wastewater. Bioresource Technology, 36, 167–171.CrossRef
Zurück zum Zitat Gonzalez, L. E., Canizares, R. O., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgraris and Scnedesmus dimorphus. Bioresource Technology, 60, 259–265.CrossRef Gonzalez, L. E., Canizares, R. O., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgraris and Scnedesmus dimorphus. Bioresource Technology, 60, 259–265.CrossRef
Zurück zum Zitat Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33, 207–217. Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33, 207–217.
Zurück zum Zitat Grima, E. M., Belarbi, E., Fernandez, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.CrossRef Grima, E. M., Belarbi, E., Fernandez, F. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.CrossRef
Zurück zum Zitat Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 32, 205–210.CrossRef Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 32, 205–210.CrossRef
Zurück zum Zitat Himberg, K., Keijola, A. M., Hiisvirta, L., Pyysalo, H., & Sivonen, K. (1989). The effect of water-treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: A laboratory study. Water Research, 23, 979–984.CrossRef Himberg, K., Keijola, A. M., Hiisvirta, L., Pyysalo, H., & Sivonen, K. (1989). The effect of water-treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: A laboratory study. Water Research, 23, 979–984.CrossRef
Zurück zum Zitat Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102, 9884–9890.CrossRef Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102, 9884–9890.CrossRef
Zurück zum Zitat Hultberg, M., Carlsson, A. S., & Gustafsson, S. (2013). Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresource Technology, 136, 401–406.CrossRef Hultberg, M., Carlsson, A. S., & Gustafsson, S. (2013). Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresource Technology, 136, 401–406.CrossRef
Zurück zum Zitat Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., & Siddiqui, K. F. (2010). Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology, 15(4), 391–396.CrossRef Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., & Siddiqui, K. F. (2010). Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Science and Technology, 15(4), 391–396.CrossRef
Zurück zum Zitat Kim, S., Jung, C. W., & Lee, B. (2012). Treatment characteristic of persuant algae-bacteria ratio on actual municipal wastewater condition. Proceedings of the 2012 joint conference: Korea Society of Water and Wastewater (KSWW), Korean Society on Water Quality (KSWQ), May 21–22. Kim, S., Jung, C. W., & Lee, B. (2012). Treatment characteristic of persuant algae-bacteria ratio on actual municipal wastewater condition. Proceedings of the 2012 joint conference: Korea Society of Water and Wastewater (KSWW), Korean Society on Water Quality (KSWQ), May 21–22.
Zurück zum Zitat Ladner, D. A., Vardona, D. R., & Clark, M. M. (2010). Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae. Journal of Membrane Science, 356, 33–43.CrossRef Ladner, D. A., Vardona, D. R., & Clark, M. M. (2010). Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae. Journal of Membrane Science, 356, 33–43.CrossRef
Zurück zum Zitat Lahin, F. A., Sarbatly, R., & Suali, E. (2013). Membrane bioreactor for wastewater treatment using microalgae. Fourth International Graduate Conference on Engineering, Science and Humanities (IGCESH) 16–17 April 2013, Univertisi Teknologi Malaysia, Johor Bahru, Johor, Malaysia. Lahin, F. A., Sarbatly, R., & Suali, E. (2013). Membrane bioreactor for wastewater treatment using microalgae. Fourth International Graduate Conference on Engineering, Science and Humanities (IGCESH) 16–17 April 2013, Univertisi Teknologi Malaysia, Johor Bahru, Johor, Malaysia.
Zurück zum Zitat Li, S., Luo, S., & Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology, 136, 267–272.CrossRef Li, S., Luo, S., & Guo, R. (2013). Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology, 136, 267–272.CrossRef
Zurück zum Zitat Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 122, 73–105. Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 122, 73–105.
Zurück zum Zitat Ozkan, A. (2012). Development of a novel algae biofilm photobioreactor for biofuel production. A dissertation, The University of Texas at Austin. Ozkan, A. (2012). Development of a novel algae biofilm photobioreactor for biofuel production. A dissertation, The University of Texas at Austin.
Zurück zum Zitat Rossi, N., Jaouen, P., Legentilhomme, P., & Petit, I. (2004). Harvesting of cynobacterium Arthrospira plantesis using organic filtration membranes. Food and Bioproducts Processing, 82(C3), 244–250.CrossRef Rossi, N., Jaouen, P., Legentilhomme, P., & Petit, I. (2004). Harvesting of cynobacterium Arthrospira plantesis using organic filtration membranes. Food and Bioproducts Processing, 82(C3), 244–250.CrossRef
Zurück zum Zitat Rossignol, N., Vandanjon, L., Jaouen, P., & Quéméneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20, 191–208.CrossRef Rossignol, N., Vandanjon, L., Jaouen, P., & Quéméneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20, 191–208.CrossRef
Zurück zum Zitat Ruiz-Martinez, A., Garcia, N. M., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.CrossRef Ruiz-Martinez, A., Garcia, N. M., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.CrossRef
Zurück zum Zitat Singh, G., & Thomas, P. B. (2012). Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresource Technology, 117, 80–85.CrossRef Singh, G., & Thomas, P. B. (2012). Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresource Technology, 117, 80–85.CrossRef
Zurück zum Zitat Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modelling of membrane fouling. Journal of Membrane Science, 139, 183–200.CrossRef Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modelling of membrane fouling. Journal of Membrane Science, 139, 183–200.CrossRef
Zurück zum Zitat Stankiewicz, A., & Moulijn, J. A. (2002). Process intensification. Industrial and Engineering Chemistry Research, 41, 1920–1924.CrossRef Stankiewicz, A., & Moulijn, J. A. (2002). Process intensification. Industrial and Engineering Chemistry Research, 41, 1920–1924.CrossRef
Zurück zum Zitat Suali, E. (2014). Carbon dioxide utilisation by integrated microalgae cultivation process in membrane photobioreactor. PhD thesis, Universiti Malaysia Sabah. Suali, E. (2014). Carbon dioxide utilisation by integrated microalgae cultivation process in membrane photobioreactor. PhD thesis, Universiti Malaysia Sabah.
Zurück zum Zitat Suali, E., & Sarbatly, R. (2012). Microalgae conversion to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342.CrossRef Suali, E., & Sarbatly, R. (2012). Microalgae conversion to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342.CrossRef
Zurück zum Zitat Suali, E., Sarbatly, R., & Shaleh, S. R. M. (2012). Characterisation of local Chlorella sp. toward biofuel production. International conference on applied energy, 5–8 July, Suzhou, China. Suali, E., Sarbatly, R., & Shaleh, S. R. M. (2012). Characterisation of local Chlorella sp. toward biofuel production. International conference on applied energy, 5–8 July, Suzhou, China.
Zurück zum Zitat Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2009). CO2 bio-mitigation using microalgae. Bioresource Technology, 102, 35–42. Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2009). CO2 bio-mitigation using microalgae. Bioresource Technology, 102, 35–42.
Zurück zum Zitat Wicaksana, F., Anthony, G. F., Pharima, P., & Robert, F. (2012). Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. Journal of Membrane Science, 387–388, 83–92.CrossRef Wicaksana, F., Anthony, G. F., Pharima, P., & Robert, F. (2012). Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. Journal of Membrane Science, 387–388, 83–92.CrossRef
Zurück zum Zitat Yoo, C., Jun, S., Lee, J., Ahn, C., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, 71–74.CrossRef Yoo, C., Jun, S., Lee, J., Ahn, C., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101, 71–74.CrossRef
Zurück zum Zitat Yun, Y. S., Lee, S. B., Park, J. M., Lee, C. I., & Yang, J. W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology, 69, 451–455.CrossRef Yun, Y. S., Lee, S. B., Park, J. M., Lee, C. I., & Yang, J. W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology, 69, 451–455.CrossRef
Zurück zum Zitat Zhang, X., Qiang, H., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101, 5297–5304.CrossRef Zhang, X., Qiang, H., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101, 5297–5304.CrossRef
Metadaten
Titel
Membrane Processes for Microalgae in Carbonation and Wastewater Treatment
verfasst von
Rosalam Sarbatly
Emma Suali
Farhana Abd Lahin
Chel-Ken Chiam
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_18