Skip to main content
Erschienen in: Journal of Materials Science 11/2016

04.03.2016 | Original Paper

Membranes for rechargeable lithium sulphur semi-flow batteries

verfasst von: R. Prasada Rao, S. Adams

Erschienen in: Journal of Materials Science | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of achieving high-energy, long-life, safe and low cast storage batteries has brought tremendous scientific attention in the last decade, resulting in significant improvements in the stored energy of cathodes and anodes particularly in lithium-based battery technology. However, presently available lithium-ion technology cannot satisfy the increasing demand for energy density. Li–S battery is a typical example, which can offer theoretically a fivefold increase in energy density compared with conventional lithium rechargeable batteries. Despite significant advances, there are challenges to its wide-scale implementation, which include dissolution of intermediate polysulphide reaction species into the electrolyte when liquid polysulphide is used as cathodes. Another problem is preparation of polysulphides. Here we report a novel approach to replace the liquid electrolyte with solid lithium conducting membranes, Argyrodite (Li6PS5X(X = Cl,Br)) and Li10GeP2S12 solid electrolytes to mitigate the problem. Among the three solid electrolyte membranes Li10GeP2S12 exhibited high first discharge specific capacity of 1435 (±3) mAh g−1 at 0.5 C rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Noorden RV (2014) The rechargeable revolution: a better battery. Nature 507:26–28CrossRef Noorden RV (2014) The rechargeable revolution: a better battery. Nature 507:26–28CrossRef
2.
Zurück zum Zitat Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O-2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O-2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRef
3.
Zurück zum Zitat Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5CrossRef Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5CrossRef
4.
Zurück zum Zitat Xu R, Belharouak I, Li JCM, Zhang X, Bloom I, Bareño J (2013) Role of polysulfides in self-healing lithium-sulfur batteries. Adv Energy Mater 3:833–838CrossRef Xu R, Belharouak I, Li JCM, Zhang X, Bloom I, Bareño J (2013) Role of polysulfides in self-healing lithium-sulfur batteries. Adv Energy Mater 3:833–838CrossRef
5.
Zurück zum Zitat Lee KT, Black R, Yim T, Ji X, Nazar LF (2012) Surface-initiated growth of thin oxide coatings for Li–sulfur battery cathodes. Adv Energy Mater 2:1490–1496CrossRef Lee KT, Black R, Yim T, Ji X, Nazar LF (2012) Surface-initiated growth of thin oxide coatings for Li–sulfur battery cathodes. Adv Energy Mater 2:1490–1496CrossRef
6.
Zurück zum Zitat Zu C, Manthiram A (2013) Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv Energy Mater 3:1008–1012CrossRef Zu C, Manthiram A (2013) Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv Energy Mater 3:1008–1012CrossRef
7.
Zurück zum Zitat Scheers J, Fantini S, Johansson P (2014) A review of electrolytes for lithium–sulphur batteries. J Power Sources 255:204–218CrossRef Scheers J, Fantini S, Johansson P (2014) A review of electrolytes for lithium–sulphur batteries. J Power Sources 255:204–218CrossRef
8.
Zurück zum Zitat Prasada Rao R, Tho TD, Adams S (2009) Lithium ion transport pathways in xLiCl−(1 − x)(0.6Li2O–0.4P2O5) glasses. J Power Sources 189:385–390CrossRef Prasada Rao R, Tho TD, Adams S (2009) Lithium ion transport pathways in xLiCl−(1 − x)(0.6Li2O–0.4P2O5) glasses. J Power Sources 189:385–390CrossRef
9.
Zurück zum Zitat Rao RP, Gu W, Sharma N, Peterson VK, Avdeev M, Adams S (2015) In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: toward a rational synthesis of garnet solid electrolytes. Chem Mat 27:2903–2910CrossRef Rao RP, Gu W, Sharma N, Peterson VK, Avdeev M, Adams S (2015) In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: toward a rational synthesis of garnet solid electrolytes. Chem Mat 27:2903–2910CrossRef
10.
Zurück zum Zitat Adams S, Rao RP (2012) Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). J Mater Chem 22:1426–1434CrossRef Adams S, Rao RP (2012) Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). J Mater Chem 22:1426–1434CrossRef
11.
Zurück zum Zitat Safanama D, Damiano D, Rao RP, Adams S (2014) Lithium conducting solid electrolyte Li1+xAlxGe2−x(PO4)3 membrane for aqueous lithium air battery. Solid State Ion 262:211–215CrossRef Safanama D, Damiano D, Rao RP, Adams S (2014) Lithium conducting solid electrolyte Li1+xAlxGe2−x(PO4)3 membrane for aqueous lithium air battery. Solid State Ion 262:211–215CrossRef
12.
Zurück zum Zitat Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion 53–56(Part 1):647–654CrossRef Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1992) Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion 53–56(Part 1):647–654CrossRef
13.
Zurück zum Zitat Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686CrossRef Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686CrossRef
14.
Zurück zum Zitat Kanno R, Murayama M (2001) Lithium ionic conductor Thio-LISICON: the Li2S-GeS2-P2S5 system. J Electrochem Soc 148:A742–A746CrossRef Kanno R, Murayama M (2001) Lithium ionic conductor Thio-LISICON: the Li2S-GeS2-P2S5 system. J Electrochem Soc 148:A742–A746CrossRef
15.
Zurück zum Zitat Adams S, Prasada Rao R (2012) Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem 22:7687–7691CrossRef Adams S, Prasada Rao R (2012) Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem 22:7687–7691CrossRef
16.
Zurück zum Zitat Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631CrossRef Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631CrossRef
18.
Zurück zum Zitat Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 47:755–758CrossRef Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 47:755–758CrossRef
19.
Zurück zum Zitat Deiseroth H-J, Maier J, Weichert K, Nickel V, Kong S-T, Reiner C (2011) Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Zeitschrift für anorganische und allgemeine Chemie 637:1287–1294CrossRef Deiseroth H-J, Maier J, Weichert K, Nickel V, Kong S-T, Reiner C (2011) Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Zeitschrift für anorganische und allgemeine Chemie 637:1287–1294CrossRef
20.
Zurück zum Zitat Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi (a) 208:1804–1807CrossRef Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi (a) 208:1804–1807CrossRef
21.
Zurück zum Zitat Rayavarapu P, Sharma N, Peterson V, Adams S (2012) Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J Solid State Electrochem 16:1807–1813CrossRef Rayavarapu P, Sharma N, Peterson V, Adams S (2012) Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J Solid State Electrochem 16:1807–1813CrossRef
22.
Zurück zum Zitat Rao RP, Sharma N, Peterson VK, Adams S (2013) Formation and conductivity studies of lithium argyrodite solid electrolytes using in situ neutron diffraction. Solid State Ion 230:72–76CrossRef Rao RP, Sharma N, Peterson VK, Adams S (2013) Formation and conductivity studies of lithium argyrodite solid electrolytes using in situ neutron diffraction. Solid State Ion 230:72–76CrossRef
23.
Zurück zum Zitat Adams S, Prasada Rao R (2011) Simulated defect and interface engineering for high power Li electrode materials. Solid State Ion 184:57–61CrossRef Adams S, Prasada Rao R (2011) Simulated defect and interface engineering for high power Li electrode materials. Solid State Ion 184:57–61CrossRef
24.
Zurück zum Zitat Nagao M, Hayashi A, Tatsumisago M (2012) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22:10015–10020CrossRef Nagao M, Hayashi A, Tatsumisago M (2012) High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J Mater Chem 22:10015–10020CrossRef
25.
Zurück zum Zitat Chen M, Rao RP, Adams S (2014) The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In-Li batteries. Solid State Ion 268:300–304CrossRef Chen M, Rao RP, Adams S (2014) The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In-Li batteries. Solid State Ion 268:300–304CrossRef
26.
Zurück zum Zitat Nagao M, Hayashi A, Tatsumisago M (2012) Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem Commun 22:177–180CrossRef Nagao M, Hayashi A, Tatsumisago M (2012) Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem Commun 22:177–180CrossRef
27.
Zurück zum Zitat Visco SJ, Tsang FY (2001) Method for forming encapsulated lithium electrodes having glass protective layers. Google Patents Visco SJ, Tsang FY (2001) Method for forming encapsulated lithium electrodes having glass protective layers. Google Patents
28.
Zurück zum Zitat Visco SJ, Chu M-Y (2000) Protective coatings for negative electrodes. PolyPlus Battery Company, Inc. (PolyPlus Battery Company I ed. US) Visco SJ, Chu M-Y (2000) Protective coatings for negative electrodes. PolyPlus Battery Company, Inc. (PolyPlus Battery Company I ed. US)
29.
Zurück zum Zitat Ota N, Yamanaka S (2002) Lithium secondary battery. US 6,365,300, Sumitomo Electric Industries, Ltd. Ota N, Yamanaka S (2002) Lithium secondary battery. US 6,365,300, Sumitomo Electric Industries, Ltd.
30.
Zurück zum Zitat Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558CrossRef Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558CrossRef
31.
Zurück zum Zitat Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef
32.
Zurück zum Zitat Chen M, Rao RP, Adams S (2014) High capacity all-solid-state Cu-Li2S/Li6PS5Br/In batteries. Solid State Ion 262:183–187CrossRef Chen M, Rao RP, Adams S (2014) High capacity all-solid-state Cu-Li2S/Li6PS5Br/In batteries. Solid State Ion 262:183–187CrossRef
33.
Zurück zum Zitat Hassoun J, Verrelli R, Reale P, Panero S, Mariotto G, Greenbaum S, Scrosati B (2013) A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. J Power Sources 229:117–122CrossRef Hassoun J, Verrelli R, Reale P, Panero S, Mariotto G, Greenbaum S, Scrosati B (2013) A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. J Power Sources 229:117–122CrossRef
34.
Zurück zum Zitat Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRef Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRef
35.
Zurück zum Zitat Chen HM, Maohua C, Adams S (2015) Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 17:16494–16506CrossRef Chen HM, Maohua C, Adams S (2015) Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 17:16494–16506CrossRef
36.
Zurück zum Zitat Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783CrossRef Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783CrossRef
Metadaten
Titel
Membranes for rechargeable lithium sulphur semi-flow batteries
verfasst von
R. Prasada Rao
S. Adams
Publikationsdatum
04.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9860-4

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Science 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.