Skip to main content

2018 | OriginalPaper | Buchkapitel

Meme Classification Using Textual and Visual Features

verfasst von : E. S. Smitha, S. Sendhilkumar, G. S. Mahalaksmi

Erschienen in: Computational Vision and Bio Inspired Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Social networks became a global phenomenon and made an enormous impact in different fields of society in a few years. These days, a huge number of memes have available in social networks. An internet meme is a cultural style that propagates from one to another in social media. It is a unit of information that jumps from place to place with slight modification. These memes play a vital part in expressing emotions of users in social networks and serve as an effective promotional and marketing tool. Visual memes are important because they will show emotion, humor, or portray something that words cannot. This paper recommends a framework that could be utilized to categorize internet memes by certain visual features and textual features.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dawkins, R.: The Selfish Gene. Oxford University Press (1989) Dawkins, R.: The Selfish Gene. Oxford University Press (1989)
2.
Zurück zum Zitat Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: MM’10 Proceedings of the 18th ACM international conference on Multimedia, pp. 83–92 (2010) Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: MM’10 Proceedings of the 18th ACM international conference on Multimedia, pp. 83–92 (2010)
3.
Zurück zum Zitat Park, D.C.: Image classification using naïve bayes classifier. Int. J. Comp. Sci. Electron. Eng. (IJCSEE) 4, Issue ISSN 2320–4028, (online), 3 (2016) Park, D.C.: Image classification using naïve bayes classifier. Int. J. Comp. Sci. Electron. Eng. (IJCSEE) 4, Issue ISSN 2320–4028, (online), 3 (2016)
4.
Zurück zum Zitat Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV), pp. 20–34 (2007) Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV), pp. 20–34 (2007)
5.
Zurück zum Zitat Deza, A., Parikh, D.: Understanding image virality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 25–34 (2015) Deza, A., Parikh, D.: Understanding image virality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 25–34 (2015)
6.
Zurück zum Zitat Drashti Jasani, G., Patel, P., Patel, S., Ahir, B., Patel, K., Dixit, M.: Review of shape and texture feature extraction techniques for fruits. Int. J. 6, pp. 4851–4854 (2015) Drashti Jasani, G., Patel, P., Patel, S., Ahir, B., Patel, K., Dixit, M.: Review of shape and texture feature extraction techniques for fruits. Int. J. 6, pp. 4851–4854 (2015)
7.
Zurück zum Zitat Yuan, J., Mcdonough, S., You, Q., Luo, J.: Sentribute: image sentiment analysis from a mid-level perspective. In: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (2013) Yuan, J., Mcdonough, S., You, Q., Luo, J.: Sentribute: image sentiment analysis from a mid-level perspective. In: Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (2013)
8.
Zurück zum Zitat Wang, W.Y., Wen, M.: I Can Has Cheezburger? A nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions. In: The 2015 Annual Conference of the North American Chapter of the ACL, pp. 355–365 (2015) Wang, W.Y., Wen, M.: I Can Has Cheezburger? A nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions. In: The 2015 Annual Conference of the North American Chapter of the ACL, pp. 355–365 (2015)
9.
Zurück zum Zitat Wang, Z., Li, S., Lee, S.Y.M., Zhou, G.: Semi-supervised learning for imbalanced sentiment classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 1826–1831 (2011) Wang, Z., Li, S., Lee, S.Y.M., Zhou, G.: Semi-supervised learning for imbalanced sentiment classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 1826–1831 (2011)
10.
Zurück zum Zitat Rushdi-Saleh, M., Mart´ın-Valdivia, M., R´aez, A., L´opez, L.: Experiments with svm to classify opinions in different domains. Expert Sys. App. 38, 14799–14804 (2011) Rushdi-Saleh, M., Mart´ın-Valdivia, M., R´aez, A., L´opez, L.: Experiments with svm to classify opinions in different domains. Expert Sys. App. 38, 14799–14804 (2011)
11.
Zurück zum Zitat Nagarjuna Devi, D.V., Kumar, C., Prasad, S.: A feature based approach for sentiment analysis by using support vector machine. In: IEEE 6th International Conference on Advanced Computing, pp. 44–49 (2016) Nagarjuna Devi, D.V., Kumar, C., Prasad, S.: A feature based approach for sentiment analysis by using support vector machine. In: IEEE 6th International Conference on Advanced Computing, pp. 44–49 (2016)
13.
Zurück zum Zitat Owusu, E., Zhan, Y., Mao, Q.R.: An SVM AdadaBoost facial expression recognition system. Springer Science+Business Media, New York (2013) Owusu, E., Zhan, Y., Mao, Q.R.: An SVM AdadaBoost facial expression recognition system. Springer Science+Business Media, New York (2013)
Metadaten
Titel
Meme Classification Using Textual and Visual Features
verfasst von
E. S. Smitha
S. Sendhilkumar
G. S. Mahalaksmi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-71767-8_87