Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Memristor Device Modeling

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a physics-based mathematical model for anionic memristor devices. The model utilizes Poisson Boltzmann equation to account for temperature effect on device potential at equilibrium and comprehends material effect on device behaviors. A detailed MATLAB-based algorithm is developed to clarify and simplify the simulation environment. Moreover, the provided model is used to simulate and predict the effect of oxide thickness, material type, and operating temperatures on the electrical characteristics of the device. The value of this contribution is to provide a framework intended to simulate anionic memristor devices using correlated mathematical models. In addition, the model can be used to explore device materials and predict its performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58, 3099–3105 (2011)CrossRef T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58, 3099–3105 (2011)CrossRef
2.
Zurück zum Zitat S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circ. Syst. I-Regular Papers 60, 211–221 (2013)MathSciNetCrossRef S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circ. Syst. I-Regular Papers 60, 211–221 (2013)MathSciNetCrossRef
3.
Zurück zum Zitat J.X. Zha, H. Huang, Y.J. Liu, A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Circ. Syst. II-Express Briefs 63, 423–427 (2016) J.X. Zha, H. Huang, Y.J. Liu, A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Circ. Syst. II-Express Briefs 63, 423–427 (2016)
4.
Zurück zum Zitat S. Kvatinsky, M. Ramadan, E.G. Friedman, A. Kolodny, VTEAM: A general model for voltage-controlled memristors. IEEE Trans. Circ. Syst. II: Express Briefs 62, 786–790 (2015) S. Kvatinsky, M. Ramadan, E.G. Friedman, A. Kolodny, VTEAM: A general model for voltage-controlled memristors. IEEE Trans. Circ. Syst. II: Express Briefs 62, 786–790 (2015)
5.
Zurück zum Zitat M.P. Sah, C. Yang, H. Kim, B. Muthuswamy, J. Jevtic, L. Chua, A generic model of memristors with parasitic components. IEEE Trans. Circ. Syst. I: Regular Papers 62, 891–898 (2015)MathSciNet M.P. Sah, C. Yang, H. Kim, B. Muthuswamy, J. Jevtic, L. Chua, A generic model of memristors with parasitic components. IEEE Trans. Circ. Syst. I: Regular Papers 62, 891–898 (2015)MathSciNet
6.
Zurück zum Zitat C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, S. Rogers, A memristor device model. IEEE Electron Device Lett. 32, 1436–1438 (2011)CrossRef C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, S. Rogers, A memristor device model. IEEE Electron Device Lett. 32, 1436–1438 (2011)CrossRef
7.
Zurück zum Zitat M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)CrossRef M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)CrossRef
8.
Zurück zum Zitat D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRef D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRef
9.
Zurück zum Zitat C. O’Kelly, J.A. Fairfield, J.J. Boland, A single nanoscale junction with programmable multilevel memory. ACS Nano. 8, 11724–11729 (2014) C. O’Kelly, J.A. Fairfield, J.J. Boland, A single nanoscale junction with programmable multilevel memory. ACS Nano. 8, 11724–11729 (2014)
10.
Zurück zum Zitat D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)CrossRef D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)CrossRef
11.
Zurück zum Zitat N. Hashem, S. Das, Switching-time analysis of binary-oxide memristors via a nonlinear model. Appl. Phys. Lett. 100, 262106 (2012)CrossRef N. Hashem, S. Das, Switching-time analysis of binary-oxide memristors via a nonlinear model. Appl. Phys. Lett. 100, 262106 (2012)CrossRef
12.
Zurück zum Zitat Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 2013) Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 2013)
13.
Zurück zum Zitat M. Noman, W.K. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A Mater. Sci. Process. 102, 877–883 (2011)CrossRef M. Noman, W.K. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A Mater. Sci. Process. 102, 877–883 (2011)CrossRef
14.
Zurück zum Zitat C. Galup-Montoro, M.C. Schneider, MOSFET Modeling for Circuit Analysis and Design (World scientific, Singapore, 2007) C. Galup-Montoro, M.C. Schneider, MOSFET Modeling for Circuit Analysis and Design (World scientific, Singapore, 2007)
15.
Zurück zum Zitat E. Shivanian, S. Abbasbandy, M.S. Alhuthali, Exact analytical solution to the Poisson-Boltzmann equation for semiconductor devices. Eur. Phys. J. Plus 129, 104 (2014)CrossRef E. Shivanian, S. Abbasbandy, M.S. Alhuthali, Exact analytical solution to the Poisson-Boltzmann equation for semiconductor devices. Eur. Phys. J. Plus 129, 104 (2014)CrossRef
16.
Zurück zum Zitat A. Tangena, J. Middelhoek, N. De Rooij, Influence of positive ions on the current-voltage characteristics of MOS structures. J. Appl. Phys. 49, 2876–2879 (1978)CrossRef A. Tangena, J. Middelhoek, N. De Rooij, Influence of positive ions on the current-voltage characteristics of MOS structures. J. Appl. Phys. 49, 2876–2879 (1978)CrossRef
17.
Zurück zum Zitat H. Abunahla, D. Homouz, Y. Halawani, B. Mohammad, Modeling and device parameter design to improve reset time in binary-oxide memristors. Appl. Phys. A 117(3), 1019–1023 (2014)CrossRef H. Abunahla, D. Homouz, Y. Halawani, B. Mohammad, Modeling and device parameter design to improve reset time in binary-oxide memristors. Appl. Phys. A 117(3), 1019–1023 (2014)CrossRef
18.
Zurück zum Zitat S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef
19.
Zurück zum Zitat E. Gale, A. Adamatzky, B. de Lacy Costello, Fabrication and modelling of titanium dioxide memristors, in Proceedings RSC Younger Members Symposium (2012) E. Gale, A. Adamatzky, B. de Lacy Costello, Fabrication and modelling of titanium dioxide memristors, in Proceedings RSC Younger Members Symposium (2012)
20.
Zurück zum Zitat T.F. Bogart, J.S. Beasley, G. Rico, Electronic Devices and Circuits (Pearson/Prentice Hall, New Jersey, 2004) T.F. Bogart, J.S. Beasley, G. Rico, Electronic Devices and Circuits (Pearson/Prentice Hall, New Jersey, 2004)
21.
Zurück zum Zitat B.G. Streetman, S. Banerjee, Solid State Electronic Devices, vol. 4 (Prentice Hall, New Jersey, 2000) B.G. Streetman, S. Banerjee, Solid State Electronic Devices, vol. 4 (Prentice Hall, New Jersey, 2000)
22.
Zurück zum Zitat S. Kim, S.-J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho et al., Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRef S. Kim, S.-J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho et al., Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRef
23.
Zurück zum Zitat J. Qi, M. Olmedo, J.-G. Zheng, J. Liu, Multimode resistive switching in single ZnO nanoisland system. Sci. Rep. 3, 2405 (2013)CrossRef J. Qi, M. Olmedo, J.-G. Zheng, J. Liu, Multimode resistive switching in single ZnO nanoisland system. Sci. Rep. 3, 2405 (2013)CrossRef
24.
Zurück zum Zitat D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94, 515–519 (2009)CrossRef D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94, 515–519 (2009)CrossRef
25.
Zurück zum Zitat N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)CrossRef N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)CrossRef
26.
Zurück zum Zitat K. Chang, Y. Yeh, J. Lue, Measurement of the dielectric constants of zinc metallic nanoparticles at various frequencies. Measurement 45, 808–813 (2012)CrossRef K. Chang, Y. Yeh, J. Lue, Measurement of the dielectric constants of zinc metallic nanoparticles at various frequencies. Measurement 45, 808–813 (2012)CrossRef
27.
Zurück zum Zitat H. Kattelus, M. Ylilammi, J. Salmi, T. Ranta-Aho, E. Kanen, A. Suni, Electrical properties of tantalum based composite oxide films, in MRS Proceedings (1992), p. 51 H. Kattelus, M. Ylilammi, J. Salmi, T. Ranta-Aho, E. Kanen, A. Suni, Electrical properties of tantalum based composite oxide films, in MRS Proceedings (1992), p. 51
28.
Zurück zum Zitat H. Abunahla, B. Mohammad, D. Homouz, C.J. Okelly, Modeling valance change memristor device: Oxide thickness, material type, and temperature effects. IEEE Trans. Circ. Syst. I: Regular Papers 63(12), 2139–2148 (2016) H. Abunahla, B. Mohammad, D. Homouz, C.J. Okelly, Modeling valance change memristor device: Oxide thickness, material type, and temperature effects. IEEE Trans. Circ. Syst. I: Regular Papers 63(12), 2139–2148 (2016)
Metadaten
Titel
Memristor Device Modeling
verfasst von
Heba Abunahla
Baker Mohammad
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-65699-1_6

Neuer Inhalt