Skip to main content

2016 | OriginalPaper | Buchkapitel

2. MEMS Technologies for Energy Harvesting

verfasst von : Manuel Domínguez-Pumar, Joan Pons-Nin, Juan A. Chávez-Domínguez

Erschienen in: Nonlinearity in Energy Harvesting Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this chapter is to introduce the technology of Microelectromechanical Systems, MEMS, and their application to emerging energy harvesting devices. The chapter begins with a general introduction to the most common MEMS fabrication processes. This is followed with a survey of design mechanisms implemented in MEMS energy harvesters to provide nonlinear mechanical actuations. Mechanisms to produce bistable potential will be studied, such as introducing fixed magnets, buckling of beams or using slightly slanted clamped-clamped beams. Other nonlinear mechanisms are studied such as impact energy transfer, or the design of nonlinear springs. Finally, due to their importance in the field of MEMS and their application to energy harvesters, an introduction to actuation using piezoelectric materials is given. Examples of energy harvesters found in the literature using this actuation principle are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, C. (2012). Foundations of MEMS (2nd ed.). Pearson Education. Liu, C. (2012). Foundations of MEMS (2nd ed.). Pearson Education.
2.
Zurück zum Zitat Ghodssi, R., & Lin, P. (2012). MEMS materials and processes handbook. Springer. Ghodssi, R., & Lin, P. (2012). MEMS materials and processes handbook. Springer.
3.
Zurück zum Zitat Laermer, F., & Schilp, A. (1996). Method for anisotropic plasma etching of substrates. US Patent 5,498,312. Laermer, F., & Schilp, A. (1996). Method for anisotropic plasma etching of substrates. US Patent 5,498,312.
4.
Zurück zum Zitat Laermer, F., & Schilp, A. (2003). Method of anisotropic etching of silicon. US Patent 6,531,068. Laermer, F., & Schilp, A. (2003). Method of anisotropic etching of silicon. US Patent 6,531,068.
5.
Zurück zum Zitat Chen, K. S., Ayon, A. A., Zhang, X., & Spearing, S. M. (2002). Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). Journal of Microelectromech Systems, 11(3), 264–275.CrossRef Chen, K. S., Ayon, A. A., Zhang, X., & Spearing, S. M. (2002). Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). Journal of Microelectromech Systems, 11(3), 264–275.CrossRef
6.
Zurück zum Zitat Gorreta, S., Fernandez, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., et al. (2012). Pulsed digital oscillators for electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845.MathSciNetCrossRef Gorreta, S., Fernandez, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., et al. (2012). Pulsed digital oscillators for electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845.MathSciNetCrossRef
7.
Zurück zum Zitat Howe, R. T., & Muller, R. S. (1983). Polycrystalline silicon micromechanical beams. Journal of the Electrochemical Society, 130(6), 1420–1423.CrossRef Howe, R. T., & Muller, R. S. (1983). Polycrystalline silicon micromechanical beams. Journal of the Electrochemical Society, 130(6), 1420–1423.CrossRef
8.
Zurück zum Zitat Bustillo, J. M., Howe, R. T., & Muller, R. S. (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 86(8), 1552–1574.CrossRef Bustillo, J. M., Howe, R. T., & Muller, R. S. (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 86(8), 1552–1574.CrossRef
14.
Zurück zum Zitat Cowen, A., Hames, G., Glukh, K., & Hardy, B. (2013). PiezoMUMPS Design Handbook. Revision 1.2, MEMSCAP Inc. Cowen, A., Hames, G., Glukh, K., & Hardy, B. (2013). PiezoMUMPS Design Handbook. Revision 1.2, MEMSCAP Inc.
15.
Zurück zum Zitat Pons, J., Gorreta, S., Blokhina, E., O’Connell, D., Feely, O., & Domínguez, M. (2014). Design and test of resonators using piezoMUMPS technology. In Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, April (pp. 227–230). Pons, J., Gorreta, S., Blokhina, E., O’Connell, D., Feely, O., & Domínguez, M. (2014). Design and test of resonators using piezoMUMPS technology. In Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, April (pp. 227–230).
16.
Zurück zum Zitat Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering, 20(12), 125020.CrossRef Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering, 20(12), 125020.CrossRef
17.
Zurück zum Zitat Guan, S., & Nelson, B. (2006). Magnetic composite electroplating for depositing micromagnets. Journal of Microelectromechanical Systems, 15(2), 330–337.CrossRef Guan, S., & Nelson, B. (2006). Magnetic composite electroplating for depositing micromagnets. Journal of Microelectromechanical Systems, 15(2), 330–337.CrossRef
18.
Zurück zum Zitat Cottone, F., Vocca, H., & Gammaitoni, L. (2009). Nonlinear energy harvesting. Physical Review Letters, 102, 080601.CrossRef Cottone, F., Vocca, H., & Gammaitoni, L. (2009). Nonlinear energy harvesting. Physical Review Letters, 102, 080601.CrossRef
19.
Zurück zum Zitat Ando, B., Baglio, S., L’Episcopo, G., & Trigona, C. (2012). Investigation on mechanically bistable MEMS devices for energy harvesting from vibrations. Journal of Microelectromechanical Systems, 21(4), 779–790.CrossRef Ando, B., Baglio, S., L’Episcopo, G., & Trigona, C. (2012). Investigation on mechanically bistable MEMS devices for energy harvesting from vibrations. Journal of Microelectromechanical Systems, 21(4), 779–790.CrossRef
20.
Zurück zum Zitat Myung, N. V., Park, D. Y., Yoo, B. Y., & Sumodjo, P. T. A. (2003). Development of electroplated magnetic materials for MEMS. Journal of Magnetism and Magnetic Materials, 265(2), 189–198.CrossRef Myung, N. V., Park, D. Y., Yoo, B. Y., & Sumodjo, P. T. A. (2003). Development of electroplated magnetic materials for MEMS. Journal of Magnetism and Magnetic Materials, 265(2), 189–198.CrossRef
21.
Zurück zum Zitat Han, M., Yuan, Q., Sun, X., & Zhang, H. (2014). Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. Journal of Microelectromechanical Systems, 23(1), 204–212.CrossRef Han, M., Yuan, Q., Sun, X., & Zhang, H. (2014). Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. Journal of Microelectromechanical Systems, 23(1), 204–212.CrossRef
22.
Zurück zum Zitat Sun, X., Yuan, Q., Fang, D., & Zhang, H. (2012). Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators. Sensors and Actuators A: Physical, 188, 190–197. Selected papers from The 16th International Conference on Solid-State Sensors, Actuators and Microsystems. Sun, X., Yuan, Q., Fang, D., & Zhang, H. (2012). Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators. Sensors and Actuators A: Physical, 188, 190–197. Selected papers from The 16th International Conference on Solid-State Sensors, Actuators and Microsystems.
23.
Zurück zum Zitat Qiu, J., Lang, J. H., & Slocum, A. H. (2004). A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13(2), 137–146.CrossRef Qiu, J., Lang, J. H., & Slocum, A. H. (2004). A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13(2), 137–146.CrossRef
24.
Zurück zum Zitat Saif, M. T. A. (2000). On a tunable bistable MEMS-theory and experiment. Journal of Microelectromechanical Systems, 9(2), 157–170.MathSciNetCrossRef Saif, M. T. A. (2000). On a tunable bistable MEMS-theory and experiment. Journal of Microelectromechanical Systems, 9(2), 157–170.MathSciNetCrossRef
25.
Zurück zum Zitat Hoffmann, M., Kopka, P., & Voges, E. (1999). All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining. IEEE Journal of Selected Topics in Quantum Electronics, 5(1), 46–51.CrossRef Hoffmann, M., Kopka, P., & Voges, E. (1999). All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining. IEEE Journal of Selected Topics in Quantum Electronics, 5(1), 46–51.CrossRef
26.
Zurück zum Zitat Casals-Terre, J., Fargas-Marques, A., & Shkel, A. M. (2008). Snap-action bistable micromechanisms actuated by nonlinear resonance. Journal of Microelectromechanical Systems, 17(5), 1082–1093.CrossRef Casals-Terre, J., Fargas-Marques, A., & Shkel, A. M. (2008). Snap-action bistable micromechanisms actuated by nonlinear resonance. Journal of Microelectromechanical Systems, 17(5), 1082–1093.CrossRef
27.
Zurück zum Zitat Park, S., & Hah, D. (2008). Pre-shaped buckled-beam actuators: Theory and experiments. Sensors and Actuators A: Physical, 148(1), 186–192.CrossRef Park, S., & Hah, D. (2008). Pre-shaped buckled-beam actuators: Theory and experiments. Sensors and Actuators A: Physical, 148(1), 186–192.CrossRef
28.
Zurück zum Zitat Krylov, S., Ilic, B. R., Schreiber, D., Seretensky, S., & Craighead, H. (2008). The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18(5), 055026.CrossRef Krylov, S., Ilic, B. R., Schreiber, D., Seretensky, S., & Craighead, H. (2008). The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18(5), 055026.CrossRef
29.
Zurück zum Zitat Das, K., & Batra, R. C. (2009). Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19(3), 035008.CrossRef Das, K., & Batra, R. C. (2009). Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19(3), 035008.CrossRef
30.
Zurück zum Zitat Marinkovic, B., & Koser, H. (2009). Smart sand—a wide bandwidth vibration energy harvesting platform. Applied Physics Letters, 94(10). Marinkovic, B., & Koser, H. (2009). Smart sand—a wide bandwidth vibration energy harvesting platform. Applied Physics Letters, 94(10).
31.
Zurück zum Zitat Marzencki, M., Defosseux, M., & Basrour, S. (2009). MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. Journal of Microelectromechanical Systems, 18(6), 1444–1453.CrossRef Marzencki, M., Defosseux, M., & Basrour, S. (2009). MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. Journal of Microelectromechanical Systems, 18(6), 1444–1453.CrossRef
32.
Zurück zum Zitat Nguyen, D. S., Halvorsen, E., Jensen, G. U., & Vogl, A. (2010). Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125009.CrossRef Nguyen, D. S., Halvorsen, E., Jensen, G. U., & Vogl, A. (2010). Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125009.CrossRef
33.
Zurück zum Zitat Nguyen, D. S., & Halvorsen, E. (2011). Nonlinear springs for bandwidth-tolerant vibration energy harvesting. Journal of Microelectromechanical Systems, 20(6), 1225–1227.CrossRef Nguyen, D. S., & Halvorsen, E. (2011). Nonlinear springs for bandwidth-tolerant vibration energy harvesting. Journal of Microelectromechanical Systems, 20(6), 1225–1227.CrossRef
34.
Zurück zum Zitat Elshurafa, A. M., Khirallah, K., Tawfik, H. H., Emira, A., Abdel Aziz, A. K. S., & Sedky, S. M. (2011). Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. Journal of Microelectromechanical Systems, 20(4), 943–958. Elshurafa, A. M., Khirallah, K., Tawfik, H. H., Emira, A., Abdel Aziz, A. K. S., & Sedky, S. M. (2011). Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. Journal of Microelectromechanical Systems, 20(4), 943–958.
35.
Zurück zum Zitat Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. i. non-stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 262–269.CrossRef Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. i. non-stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 262–269.CrossRef
36.
Zurück zum Zitat Mehner, J. E., Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. ii. stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 270–278.CrossRef Mehner, J. E., Gabbay, L. D., & Senturia, S. D. (2000). Computer-aided generation of nonlinear reduced-order dynamic macromodels. ii. stress-stiffened case. Journal of Microelectromechanical Systems, 9(2), 270–278.CrossRef
37.
Zurück zum Zitat Hajati, A., & Kim, S. G., (2011). Ultra-wide bandwidth piezoelectric energy harvesting. Applied Physics Letters, 99(8). Hajati, A., & Kim, S. G., (2011). Ultra-wide bandwidth piezoelectric energy harvesting. Applied Physics Letters, 99(8).
38.
Zurück zum Zitat Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation. Journal of Microelectromechanical Systems, 19(2), 305–316.CrossRef Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation. Journal of Microelectromechanical Systems, 19(2), 305–316.CrossRef
39.
Zurück zum Zitat Umeda, M., Nakamura, K., & Ueha, S. (1996). Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Japanese Journal of Applied Physics, 35(1), Part 1, No. 5B, 3267–3273. Umeda, M., Nakamura, K., & Ueha, S. (1996). Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Japanese Journal of Applied Physics, 35(1), Part 1, No. 5B, 3267–3273.
40.
Zurück zum Zitat Dominguez-Pumar, M., Pons-Nin, J., & Ricart, J. (2008). General dynamics of pulsed digital oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2038–2050.MathSciNetCrossRef Dominguez-Pumar, M., Pons-Nin, J., & Ricart, J. (2008). General dynamics of pulsed digital oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2038–2050.MathSciNetCrossRef
41.
Zurück zum Zitat Blokhina, E., Pons-Nin, J., Ricart, J., Feely, O., & Dominguez-Pumar, M. (2010). Control of MEMS vibration modes with pulsed digital oscillators part i: Theory. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1865–1878.MathSciNetCrossRef Blokhina, E., Pons-Nin, J., Ricart, J., Feely, O., & Dominguez-Pumar, M. (2010). Control of MEMS vibration modes with pulsed digital oscillators part i: Theory. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1865–1878.MathSciNetCrossRef
42.
Zurück zum Zitat Ricart, J., Pons-Nin, J., Blokhina, E., Gorreta, S., Hernando, J., Manzaneque, T., et al. (2010). Control of MEMS vibration modes with pulsed digital oscillators part ii: Simulation and experimental results. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1879–1890.MathSciNetCrossRef Ricart, J., Pons-Nin, J., Blokhina, E., Gorreta, S., Hernando, J., Manzaneque, T., et al. (2010). Control of MEMS vibration modes with pulsed digital oscillators part ii: Simulation and experimental results. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1879–1890.MathSciNetCrossRef
43.
Zurück zum Zitat Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sensors and Actuators A: Physical, 186, 242–248. Selected Papers presented at Eurosensors XXV Athens, Greece, September 2011. Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sensors and Actuators A: Physical, 186, 242–248. Selected Papers presented at Eurosensors XXV Athens, Greece, September 2011.
44.
Zurück zum Zitat Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21(3), 035005. Liu, H., Lee, C., Kobayashi, T., Tay, C. J., & Quan, C. (2012). Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21(3), 035005.
45.
Zurück zum Zitat Liu, H., Tay, C. J., Quan, C., Kobayashi, T., & Lee, C. (2011). Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. Journal of Microelectromechanical Systems, 20(5), 1131–1142.CrossRef Liu, H., Tay, C. J., Quan, C., Kobayashi, T., & Lee, C. (2011). Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. Journal of Microelectromechanical Systems, 20(5), 1131–1142.CrossRef
46.
Zurück zum Zitat Ma, W., Zhu, R., Rufer, L., Zohar, Y., & Wong, M. (2007). An integrated floating-electrode electric microgenerator. Journal of Microelectromechanical Systems, 16(1), 29–37.CrossRef Ma, W., Zhu, R., Rufer, L., Zohar, Y., & Wong, M. (2007). An integrated floating-electrode electric microgenerator. Journal of Microelectromechanical Systems, 16(1), 29–37.CrossRef
47.
Zurück zum Zitat Ahmad, M. R., Khir, M. H., & Dennis, J. O. (2013). Design and modeling of the trapezoidal electrodes array for electrets energy harvester. In SPIE Defense, Security, and Sensing (p. 87280Z). Ahmad, M. R., Khir, M. H., & Dennis, J. O. (2013). Design and modeling of the trapezoidal electrodes array for electrets energy harvester. In SPIE Defense, Security, and Sensing (p. 87280Z).
48.
Zurück zum Zitat Suzuki, Y., Edamoto, M., Kasagi, N., Kashiwagi, K., Morizawa, Y., Yokoyama, T., et al. (2008). Micro electret energy harvesting device with analogue impedance conversion circuit. PowerMEMS, 2008, 7–10. Suzuki, Y., Edamoto, M., Kasagi, N., Kashiwagi, K., Morizawa, Y., Yokoyama, T., et al. (2008). Micro electret energy harvesting device with analogue impedance conversion circuit. PowerMEMS, 2008, 7–10.
49.
Zurück zum Zitat Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.CrossRef Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.CrossRef
50.
Zurück zum Zitat Suzuki, Y. (2011). Recent progress in MEMS electret generator for energy harvesting. IEEE Transactions on Electrical and Electronic Engineering, 6(2), 101–111.CrossRef Suzuki, Y. (2011). Recent progress in MEMS electret generator for energy harvesting. IEEE Transactions on Electrical and Electronic Engineering, 6(2), 101–111.CrossRef
51.
Zurück zum Zitat Takamatsu, T. (1991). Life time of thermal electrets of carnauba wax, esters, fatty acids and alcohols. In 7th International Symposium on Electrets, (pp. 106–110). Takamatsu, T. (1991). Life time of thermal electrets of carnauba wax, esters, fatty acids and alcohols. In 7th International Symposium on Electrets, (pp. 106–110).
52.
Zurück zum Zitat Minami, T., Utsubo, T., Yamatani, T., Miyata, T., & Ohbayashi, Y. (2003). SiO2 electret thin films prepared by various deposition methods. Thin Solid Films, 426(1–2), 47–52.CrossRef Minami, T., Utsubo, T., Yamatani, T., Miyata, T., & Ohbayashi, Y. (2003). SiO2 electret thin films prepared by various deposition methods. Thin Solid Films, 426(1–2), 47–52.CrossRef
53.
Zurück zum Zitat Sakane, Y., Suzuki, Y., & Kasagi, N. (2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.CrossRef Sakane, Y., Suzuki, Y., & Kasagi, N. (2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.CrossRef
54.
Zurück zum Zitat Nimo, A., Mescheder, U., Müller, B., & Elkeir, A. S. A. (2011). 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls. In SPIE Microtechnologies. International Society for Optics and Photonics (p. 80661Q). Nimo, A., Mescheder, U., Müller, B., & Elkeir, A. S. A. (2011). 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls. In SPIE Microtechnologies. International Society for Optics and Photonics (p. 80661Q).
55.
Zurück zum Zitat Mescheder, U., Müller, B., Baborie, S., & Urbanovic, P. (2009). Properties of SiO2 electret films charged by ion implantation for MEMS-based energy harvesting systems. Journal of Micromechanics and Microengineering, 19(9), 094003.CrossRef Mescheder, U., Müller, B., Baborie, S., & Urbanovic, P. (2009). Properties of SiO2 electret films charged by ion implantation for MEMS-based energy harvesting systems. Journal of Micromechanics and Microengineering, 19(9), 094003.CrossRef
56.
Zurück zum Zitat Mescheder, U., Nimo, A., Müller, B., & Elkeir, A. (2012). Micro harvester using isotropic charging of electrets deposited on vertical sidewalls for conversion of 3D vibrational energy. Microsystem Technologies, 18(7–8), 931–943.CrossRef Mescheder, U., Nimo, A., Müller, B., & Elkeir, A. (2012). Micro harvester using isotropic charging of electrets deposited on vertical sidewalls for conversion of 3D vibrational energy. Microsystem Technologies, 18(7–8), 931–943.CrossRef
57.
Zurück zum Zitat Westby, E. R., & Halvorsen, E. (2012). Design and modelling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mechatronics, 17(5), 995–1005.CrossRef Westby, E. R., & Halvorsen, E. (2012). Design and modelling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mechatronics, 17(5), 995–1005.CrossRef
58.
Zurück zum Zitat Yamashita, K., Honzumi, M., Hagiwara, K., Iguchi, Y., & Suzuki, Y. (2010) Vibration-driven MEMS energy harvester with vertical electrets. In textitProceedings of PowerMEMS, (pp. 165–168). Yamashita, K., Honzumi, M., Hagiwara, K., Iguchi, Y., & Suzuki, Y. (2010) Vibration-driven MEMS energy harvester with vertical electrets. In textitProceedings of PowerMEMS, (pp. 165–168).
59.
Zurück zum Zitat Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators A: Physical. Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators A: Physical.
60.
Zurück zum Zitat Liu, H., How Koh, K., & Lee, C. (2014). Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Applied Physics Letters, 104(5). Liu, H., How Koh, K., & Lee, C. (2014). Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Applied Physics Letters, 104(5).
61.
Zurück zum Zitat Marin, A., Bressers, S., & Priya, S. (2011). Multiple cell configuration electromagnetic vibration energy harvester. Journal of Physics D: Applied Physics, 44(29), 295501.CrossRef Marin, A., Bressers, S., & Priya, S. (2011). Multiple cell configuration electromagnetic vibration energy harvester. Journal of Physics D: Applied Physics, 44(29), 295501.CrossRef
62.
Zurück zum Zitat Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices –a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001.CrossRef Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices –a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001.CrossRef
63.
Zurück zum Zitat Morimoto, K., Kanno, I., Wasa, K., & Kotera, H. (2010). High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 163(1), 428–432.CrossRef Morimoto, K., Kanno, I., Wasa, K., & Kotera, H. (2010). High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 163(1), 428–432.CrossRef
64.
Zurück zum Zitat Beeby, S. P., Tudor, M., & White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175–R195.CrossRef Beeby, S. P., Tudor, M., & White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175–R195.CrossRef
65.
Zurück zum Zitat Kim, S. G., Priya, S., & Kanno, I. (2012). Piezoelectric MEMS for energy harvesting. MRS Bulletin, 37, 1039–1050.CrossRef Kim, S. G., Priya, S., & Kanno, I. (2012). Piezoelectric MEMS for energy harvesting. MRS Bulletin, 37, 1039–1050.CrossRef
66.
Zurück zum Zitat Jeon, Y. B., Sood, R., Jeong, J. H., & Kim, S. G. (2005). MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 122(1), 16–22.CrossRef Jeon, Y. B., Sood, R., Jeong, J. H., & Kim, S. G. (2005). MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 122(1), 16–22.CrossRef
67.
Zurück zum Zitat Curie, J., & Curie, P. (1880). Développement, par pression, de l’électricité polaire dans les cristaux hémiédres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 294–295. Curie, J., & Curie, P. (1880). Développement, par pression, de l’électricité polaire dans les cristaux hémiédres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 294–295.
68.
Zurück zum Zitat Curie, J., Curie, J. P., & Curie, P. (1880). Sur l’électricité polaire dans les cristaux hémiedres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 383–386. Curie, J., Curie, J. P., & Curie, P. (1880). Sur l’électricité polaire dans les cristaux hémiedres à faces inclinées. Comptes Rendus des Séances de l’Academie des Sciencies, 91, 383–386.
69.
Zurück zum Zitat Lippmann, G. (1881). Principe de la conservation de l’électricité, ou second principe de la théorie des phénoménes électriques. Journal of Theoretical and Applied Physics, 10(1), 381–394.CrossRef Lippmann, G. (1881). Principe de la conservation de l’électricité, ou second principe de la théorie des phénoménes électriques. Journal of Theoretical and Applied Physics, 10(1), 381–394.CrossRef
70.
Zurück zum Zitat IEEE standard on piezoelectricity. (1988). ANSI/IEEE Std 176-1987, pp. 1–66. IEEE standard on piezoelectricity. (1988). ANSI/IEEE Std 176-1987, pp. 1–66.
71.
Zurück zum Zitat Ensminger, D., & Stulen, F. B. (2008). Ultrasonics: data, equations and their practical uses. Taylor & Francis. Ensminger, D., & Stulen, F. B. (2008). Ultrasonics: data, equations and their practical uses. Taylor & Francis.
72.
Zurück zum Zitat Bowen, C. R., Kim, H. A., Weaver, P. M., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7, 25–44.CrossRef Bowen, C. R., Kim, H. A., Weaver, P. M., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7, 25–44.CrossRef
73.
Zurück zum Zitat Haertling, G. H. (1999). Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82, 797–818.CrossRef Haertling, G. H. (1999). Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82, 797–818.CrossRef
74.
Zurück zum Zitat Beeby, S., & White, N. (2010). Energy Harvesting for Autonomous Systems, Artech House series smart materials, structures, and systems. Artech House, Incorporated. Beeby, S., & White, N. (2010). Energy Harvesting for Autonomous Systems, Artech House series smart materials, structures, and systems. Artech House, Incorporated.
75.
Zurück zum Zitat Jaffe, B., Roth, R. S., & Marzullo, S. (1954). Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 25(6). Jaffe, B., Roth, R. S., & Marzullo, S. (1954). Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 25(6).
76.
Zurück zum Zitat Trolier-McKinstry, S., & Muralt, P. (2004). Thin film piezoelectrics for MEMS. Journal of Electroceramics, 12(1–2), 7–17.CrossRef Trolier-McKinstry, S., & Muralt, P. (2004). Thin film piezoelectrics for MEMS. Journal of Electroceramics, 12(1–2), 7–17.CrossRef
77.
Zurück zum Zitat Lovinger, A. J. (1983). Ferroelectric polymers. Science, 220(4602), 1115–1121.CrossRef Lovinger, A. J. (1983). Ferroelectric polymers. Science, 220(4602), 1115–1121.CrossRef
78.
Zurück zum Zitat Baudry, H. (2013). Screen printing piezoelectric devices. Microelectronics International, 4(3), 71–74.CrossRef Baudry, H. (2013). Screen printing piezoelectric devices. Microelectronics International, 4(3), 71–74.CrossRef
79.
Zurück zum Zitat Dietze, M., & Es-Souni, M. (2008). Structural and functional properties of screen-printed PZTPVDF-TrFE composites. Sensors and Actuators A: Physical, 143(2), 329–334.CrossRef Dietze, M., & Es-Souni, M. (2008). Structural and functional properties of screen-printed PZTPVDF-TrFE composites. Sensors and Actuators A: Physical, 143(2), 329–334.CrossRef
80.
Zurück zum Zitat Fu, D. W., Zhang, W., Cai, H., Ge, J., Zhang, Y., & Xiong, R. (2011). Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Advanced Materials, 23(47), 5658–5662.CrossRef Fu, D. W., Zhang, W., Cai, H., Ge, J., Zhang, Y., & Xiong, R. (2011). Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Advanced Materials, 23(47), 5658–5662.CrossRef
81.
Zurück zum Zitat Fu, D. W., Cai, H. L., Liu, Y., Ye, Q., Zhang, W., Zhang, Y., et al. (2013). Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science, 339(6118), 425–428.CrossRef Fu, D. W., Cai, H. L., Liu, Y., Ye, Q., Zhang, W., Zhang, Y., et al. (2013). Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science, 339(6118), 425–428.CrossRef
82.
Zurück zum Zitat Maas, R., Koch, M., Harris, N. R., White, N. M., & Evans, A. G. R. (1997). Thick-film printing of PZT onto silicon. Materials Letters, 31(1–2), 109–112.CrossRef Maas, R., Koch, M., Harris, N. R., White, N. M., & Evans, A. G. R. (1997). Thick-film printing of PZT onto silicon. Materials Letters, 31(1–2), 109–112.CrossRef
83.
Zurück zum Zitat Van Schaijk, R., Elfrink, R., Kamel, T. M., & Goedbloed, M. (2008). Piezoelectric aln energy harvesters for wireless autonomous transducer solutions. In Sensors, 2008 IEEE (pp. 45–48). Van Schaijk, R., Elfrink, R., Kamel, T. M., & Goedbloed, M. (2008). Piezoelectric aln energy harvesters for wireless autonomous transducer solutions. In Sensors, 2008 IEEE (pp. 45–48).
84.
Zurück zum Zitat Guy, I. L., Muensit, S., & Goldys, E. M. (1999). Extensional piezoelectric coefficients of gallium nitride and aluminium nitride. Applied Physics Letters, 75(26), 4133–4135.CrossRef Guy, I. L., Muensit, S., & Goldys, E. M. (1999). Extensional piezoelectric coefficients of gallium nitride and aluminium nitride. Applied Physics Letters, 75(26), 4133–4135.CrossRef
85.
Zurück zum Zitat Tadigadapa, S., & Mateti, K. (2009). Piezoelectric MEMS sensors: state-of-the-art and perspectives. Measurement Science and Technology, 20(9), 092001.CrossRef Tadigadapa, S., & Mateti, K. (2009). Piezoelectric MEMS sensors: state-of-the-art and perspectives. Measurement Science and Technology, 20(9), 092001.CrossRef
86.
Zurück zum Zitat Crisler, D. F., Cupal, J. J., & Moore, A. R. (1968). Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals. Proceedings of the IEEE, 56(2), 225–226.CrossRef Crisler, D. F., Cupal, J. J., & Moore, A. R. (1968). Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals. Proceedings of the IEEE, 56(2), 225–226.CrossRef
87.
Zurück zum Zitat Park, J. C., Park, J. Y., & Lee, Y. (2010). Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. Journal of Microelectromechanical Systems, 19(5), 1215–1222.CrossRef Park, J. C., Park, J. Y., & Lee, Y. (2010). Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. Journal of Microelectromechanical Systems, 19(5), 1215–1222.CrossRef
88.
Zurück zum Zitat Cho, J., Anderson, M., Richards, R., Bahr, D., & Richards, C. (2005). Optimization of electromechanical coupling for a thin-film PZT membrane: I. modeling. Journal of Micromechanics and Microengineering, 15(10), 1797.CrossRef Cho, J., Anderson, M., Richards, R., Bahr, D., & Richards, C. (2005). Optimization of electromechanical coupling for a thin-film PZT membrane: I. modeling. Journal of Micromechanics and Microengineering, 15(10), 1797.CrossRef
89.
Zurück zum Zitat Kim, S. B., Park, H., Kim, S. H., Wikle, H. C., Park, J. H., & Kim, D. J. (2013). Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. Journal of Microelectromechanical Systems, 22(1), 26–33.CrossRef Kim, S. B., Park, H., Kim, S. H., Wikle, H. C., Park, J. H., & Kim, D. J. (2013). Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. Journal of Microelectromechanical Systems, 22(1), 26–33.CrossRef
90.
Zurück zum Zitat Erturk, A., & Inman, D. J. (2011). Piezoelectric energy harvesting. John Wiley & Sons. Erturk, A., & Inman, D. J. (2011). Piezoelectric energy harvesting. John Wiley & Sons.
91.
Zurück zum Zitat Xu, R., Lei, A., Dahl-Petersen, C., Hansen, K., Guizzetti, M., Birkelund, M., Thomsen, E., et al. (2012). Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters. Journal of Micromechanics and Microengineering, 22(9). Xu, R., Lei, A., Dahl-Petersen, C., Hansen, K., Guizzetti, M., Birkelund, M., Thomsen, E., et al. (2012). Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters. Journal of Micromechanics and Microengineering, 22(9).
Metadaten
Titel
MEMS Technologies for Energy Harvesting
verfasst von
Manuel Domínguez-Pumar
Joan Pons-Nin
Juan A. Chávez-Domínguez
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20355-3_2