Skip to main content
Erschienen in: Cognitive Computation 3/2020

16.01.2020

Merging Similar Neurons for Deep Networks Compression

verfasst von: Guoqiang Zhong, Wenxue Liu, Hui Yao, Tao Li, Jinxuan Sun, Xiang Liu

Erschienen in: Cognitive Computation | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep neural networks have achieved outstanding progress in many fields, such as computer vision, speech recognition and natural language processing. However, large deep neural networks often need huge storage space and long training time, making them difficult to apply to resource restricted devices. In this paper, we propose a method for compressing the structure of deep neural networks. Specifically, we apply clustering analysis to find similar neurons in each layer of the original network, and merge them and the corresponding connections. After the compression of the network, the number of parameters in the deep neural network is significantly reduced, and the required storage space and computational time is greatly reduced as well. We test our method on deep belief network (DBN) and two convolutional neural networks. The experimental results demonstrate that our proposed method can greatly reduce the number of parameters of the deep networks, while keeping their classification accuracy. Especially, on the CIFAR-10 dataset, we have compressed VGGNet with compression ratio 92.96%, and the final model after fine-tuning obtains even higher accuracy than the original model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albelwi S, Mahmood A. A framework for designing the architectures of deep convolutional neural networks. Entropy 2017;19(6):242.CrossRef Albelwi S, Mahmood A. A framework for designing the architectures of deep convolutional neural networks. Entropy 2017;19(6):242.CrossRef
2.
Zurück zum Zitat Bucila C, Caruana R, Niculescu-Mizil A. Model compression. ACM SIGKDD; 2006. p. 535–541. Bucila C, Caruana R, Niculescu-Mizil A. Model compression. ACM SIGKDD; 2006. p. 535–541.
3.
Zurück zum Zitat Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y. Compressing neural networks with the hashing trick. ICML; 2015. p. 2285–2294. Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y. Compressing neural networks with the hashing trick. ICML; 2015. p. 2285–2294.
4.
Zurück zum Zitat Cheng Y, Wang D, Zhou P, Zhang T. 2017. A survey of model compression and acceleration for deep neural networks. arXiv:1710.09282. Cheng Y, Wang D, Zhou P, Zhang T. 2017. A survey of model compression and acceleration for deep neural networks. arXiv:1710.​09282.
5.
Zurück zum Zitat Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa PP. Natural language processing (almost) from scratch. J Mach Learn Res 2011;12:2493–2537. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa PP. Natural language processing (almost) from scratch. J Mach Learn Res 2011;12:2493–2537.
6.
Zurück zum Zitat Courbariaux M, Bengio Y, David J. Binaryconnect: training deep neural networks with binary weights during propagations. NIPS; 2015. p. 3123–3131. Courbariaux M, Bengio Y, David J. Binaryconnect: training deep neural networks with binary weights during propagations. NIPS; 2015. p. 3123–3131.
7.
Zurück zum Zitat Deng L, Li J, Huang J, Yao K, Yu D, Seide F, Seltzer ML, Zweig G, He X, Williams JD, Gong Y, Acero A. Recent advances in deep learning for speech research at Microsoft. ICASSP; 2013. p. 8604–8608. Deng L, Li J, Huang J, Yao K, Yu D, Seide F, Seltzer ML, Zweig G, He X, Williams JD, Gong Y, Acero A. Recent advances in deep learning for speech research at Microsoft. ICASSP; 2013. p. 8604–8608.
8.
Zurück zum Zitat Denil M, Shakibi B, Dinh L, Ranzato M, de Freitas N. Predicting parameters in deep learning. NIPS; 2013. p. 2148–2156. Denil M, Shakibi B, Dinh L, Ranzato M, de Freitas N. Predicting parameters in deep learning. NIPS; 2013. p. 2148–2156.
9.
Zurück zum Zitat Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R. Exploiting linear structure within convolutional networks for efficient evaluation. NIPS; 2014. p. 1269–1277. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R. Exploiting linear structure within convolutional networks for efficient evaluation. NIPS; 2014. p. 1269–1277.
10.
Zurück zum Zitat Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. DeCAF: A deep convolutional activation feature for generic visual recognition. ICML; 2014. p. 647–655. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. DeCAF: A deep convolutional activation feature for generic visual recognition. ICML; 2014. p. 647–655.
11.
Zurück zum Zitat Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cognitive Computation 2016;8(5):924–934.CrossRef Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cognitive Computation 2016;8(5):924–934.CrossRef
12.
Zurück zum Zitat Gong Y, Liu L, Yang M, Bourdev LD. 2014. Compressing deep convolutional networks using vector quantization. arXiv:1412.6115. Gong Y, Liu L, Yang M, Bourdev LD. 2014. Compressing deep convolutional networks using vector quantization. arXiv:1412.​6115.
13.
Zurück zum Zitat Han S, Mao H, Dally WJ. 2015. Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. arXiv:1510.00149. Han S, Mao H, Dally WJ. 2015. Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. arXiv:1510.​00149.
14.
Zurück zum Zitat He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks. IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017; 2017. p. 1398–1406. He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks. IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017; 2017. p. 1398–1406.
15.
Zurück zum Zitat Hinton GE, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.02531; 2015. Hinton GE, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.​02531; 2015.
16.
Zurück zum Zitat Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.​04861.
17.
Zurück zum Zitat Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and < 0.5 Mb model size. arXiv:1602.07360. Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and < 0.5 Mb model size. arXiv:1602.​07360.
18.
Zurück zum Zitat Jin X, Xie G, Huang K, Hussain A. Accelerating infinite ensemble of clustering by pivot features. Cognitive Computation 2018;10(6):1042–1050.CrossRef Jin X, Xie G, Huang K, Hussain A. Accelerating infinite ensemble of clustering by pivot features. Cognitive Computation 2018;10(6):1042–1050.CrossRef
19.
Zurück zum Zitat Kim Y, Park E, Yoo S, Choi T, Yang L, Shin D. 2015. Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv:1511.06530. Kim Y, Park E, Yoo S, Choi T, Yang L, Shin D. 2015. Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv:1511.​06530.
20.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. NIPS; 2012 . p. 1106–1114. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. NIPS; 2012 . p. 1106–1114.
21.
Zurück zum Zitat Lebedev V, Ganin Y, Rakhuba M, Oseledets IV, Lempitsky VS. 2014. Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv:1412.6553. Lebedev V, Ganin Y, Rakhuba M, Oseledets IV, Lempitsky VS. 2014. Speeding-up convolutional neural networks using fine-tuned CP-decomposition. arXiv:1412.​6553.
22.
Zurück zum Zitat Lebedev V, Lempitsky VS. Fast ConvNets using group-wise brain damage. CVPR; 2016. p. 2554–2564. Lebedev V, Lempitsky VS. Fast ConvNets using group-wise brain damage. CVPR; 2016. p. 2554–2564.
23.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature 2015;521(7553):436–444.CrossRef LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature 2015;521(7553):436–444.CrossRef
24.
Zurück zum Zitat Li H, Kadav A, Durdanovic I, Samet H, Graf HP. 2016. Pruning filters for efficient ConvNets. arXiv:1608.08710. Li H, Kadav A, Durdanovic I, Samet H, Graf HP. 2016. Pruning filters for efficient ConvNets. arXiv:1608.​08710.
25.
Zurück zum Zitat Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C. Learning efficient convolutional networks through network slimming. ICCV; 2017. p. 2755–2763. Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C. Learning efficient convolutional networks through network slimming. ICCV; 2017. p. 2755–2763.
26.
Zurück zum Zitat Ren S, He K, Girshick RB, Sun J. Faster r-CNN: towards real-time object detection with region proposal networks. NIPS; 2015. p. 91–99. Ren S, He K, Girshick RB, Sun J. Faster r-CNN: towards real-time object detection with region proposal networks. NIPS; 2015. p. 91–99.
27.
Zurück zum Zitat Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y. 2014. Fitnets: hints for thin deep nets. arXiv:1412.6550. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y. 2014. Fitnets: hints for thin deep nets. arXiv:1412.​6550.
28.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein MS, Berg AC, Li F. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211–252.CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein MS, Berg AC, Li F. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211–252.CrossRef
29.
Zurück zum Zitat Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.​1556.
30.
Zurück zum Zitat Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. ECCV; 2014. p. 818–833. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. ECCV; 2014. p. 818–833.
31.
Zurück zum Zitat Zhang S, Huang K, Zhang R, Hussain A. Learning from few samples with memory network. Cognitive Computation 2018;10(1):15–22.CrossRef Zhang S, Huang K, Zhang R, Hussain A. Learning from few samples with memory network. Cognitive Computation 2018;10(1):15–22.CrossRef
32.
Zurück zum Zitat Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cognitive Computation 2018;10(1):179–186.CrossRef Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cognitive Computation 2018;10(1):179–186.CrossRef
33.
Zurück zum Zitat Zhong G, Yao H, Zhou H. Merging neurons for structure compression of deep networks. ICPR; 2018. p. 1462–1467. Zhong G, Yao H, Zhou H. Merging neurons for structure compression of deep networks. ICPR; 2018. p. 1462–1467.
Metadaten
Titel
Merging Similar Neurons for Deep Networks Compression
verfasst von
Guoqiang Zhong
Wenxue Liu
Hui Yao
Tao Li
Jinxuan Sun
Xiang Liu
Publikationsdatum
16.01.2020
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 3/2020
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09703-6

Weitere Artikel der Ausgabe 3/2020

Cognitive Computation 3/2020 Zur Ausgabe