Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2020

06.01.2020

Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework

verfasst von: Fei Chen, Huajia Zhu, Haiming Zhang, Zhenshan Cui

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main attraction of cellular automaton (CA) method used in computational material science lies on not only the simulation of recrystallization without the complicated differential equations calculation, but also the visualization of nucleation and grain growth during discontinuous recrystallization. In this work, by incorporating the idea of multilevel cellular space into the classical CA simulation framework and formulating cellular state transformation rules and data transfer rules between different levels of cellular space, the multilevel cellular automaton (MCA) model for dynamic recrystallization (DRX) is constructed for the first time. The developed MCA model includes a multilevel recrystallized nucleation (MRN) module and a full-field multilevel grain topological deformation (FMGTD) module. The thermal compression experiments of 316LN stainless steel are carried out, and the developed MCA model is applied to the numerical simulation of DRX for 316LN steel. The accuracy and reliability of this model are verified by comparing simulation results with experimental results. The influences of simulation parameters such as the number of levels N in the FMGTD module and the discrete strain increment on simulation results are discussed. The discrete cellular space area (i.e., grain topology mapping accuracy) in the MCA model increases with N but decreases with the discrete strain increment. The results show that the developed MCA model can not only describe the grain topological deformation in the DRX process more accurately but also more compatible with the physical mechanism of recrystallized nucleation. The calculation accuracy of the MCA model is higher than the existing CA model. Besides, the MCA model can be closer to the real deformation process while ensuring the high grain topology mapping accuracy and solve the problem of the loss of grain boundary area in the existing CA model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.CrossRef
3.
4.
Zurück zum Zitat 4. H. Li, X. Sun, and H. Yang: Int. J. Plast., 2016, vol. 87, pp. 154-80.CrossRef 4. H. Li, X. Sun, and H. Yang: Int. J. Plast., 2016, vol. 87, pp. 154-80.CrossRef
5.
6.
Zurück zum Zitat 6. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.CrossRef 6. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.CrossRef
7.
Zurück zum Zitat 7. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.CrossRef 7. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.CrossRef
8.
Zurück zum Zitat 8. F. Chen, Z. Cui, and S. Chen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5073-80.CrossRef 8. F. Chen, Z. Cui, and S. Chen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5073-80.CrossRef
9.
Zurück zum Zitat 9. G. Henshall, M. Kassner, and H. McQueen: Metall. Trans. A, 1992, vol. 23, pp. 881-89.CrossRef 9. G. Henshall, M. Kassner, and H. McQueen: Metall. Trans. A, 1992, vol. 23, pp. 881-89.CrossRef
10.
Zurück zum Zitat 10. S. Ion, F. Humphreys, and S. White: Acta Metall., 1982, vol. 30, pp. 1909-19.CrossRef 10. S. Ion, F. Humphreys, and S. White: Acta Metall., 1982, vol. 30, pp. 1909-19.CrossRef
11.
Zurück zum Zitat 11. M. Azarbarmas, M. Aghaie-Khafri, J. Cabrera, and J. Calvo: Mater. Sci. Eng. A, 2016, vol. 678, pp. 137-52.CrossRef 11. M. Azarbarmas, M. Aghaie-Khafri, J. Cabrera, and J. Calvo: Mater. Sci. Eng. A, 2016, vol. 678, pp. 137-52.CrossRef
12.
Zurück zum Zitat 12. Z. Liu, P. Li, L. Xiong, T. Liu, and L. He: Mater. Sci. Eng. A, 2017, vol. 680, pp. 259-69.CrossRef 12. Z. Liu, P. Li, L. Xiong, T. Liu, and L. He: Mater. Sci. Eng. A, 2017, vol. 680, pp. 259-69.CrossRef
13.
Zurück zum Zitat 13. H. Paul, J. Driver, and Z. Jasieński: Acta Mater., 2002, vol. 50, pp. 815-30.CrossRef 13. H. Paul, J. Driver, and Z. Jasieński: Acta Mater., 2002, vol. 50, pp. 815-30.CrossRef
14.
Zurück zum Zitat 14. P. Vianco and J. Rejent: J. Electron. Mater., 2009, vol. 38, pp. 1815-25.CrossRef 14. P. Vianco and J. Rejent: J. Electron. Mater., 2009, vol. 38, pp. 1815-25.CrossRef
15.
Zurück zum Zitat 15. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139-47.CrossRef 15. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139-47.CrossRef
16.
Zurück zum Zitat 16. M. Myshlyaev, H. McQueen, A. Mwembela, and E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121-33.CrossRef 16. M. Myshlyaev, H. McQueen, A. Mwembela, and E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121-33.CrossRef
17.
19.
Zurück zum Zitat 19. X.M. Chen, Y. Lin, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568-77.CrossRef 19. X.M. Chen, Y. Lin, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568-77.CrossRef
20.
Zurück zum Zitat 20. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685-99.CrossRef 20. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685-99.CrossRef
21.
Zurück zum Zitat 21. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.CrossRef 21. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.CrossRef
22.
23.
Zurück zum Zitat 23. P. Zhao, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2018, vol. 100, pp. 52-68.CrossRef 23. P. Zhao, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2018, vol. 100, pp. 52-68.CrossRef
24.
Zurück zum Zitat 24. A.A. Brown and D.J. Bammann: Int. J. Plast., 2012, vol. 32, pp. 17-35.CrossRef 24. A.A. Brown and D.J. Bammann: Int. J. Plast., 2012, vol. 32, pp. 17-35.CrossRef
25.
26.
Zurück zum Zitat 26. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 165-71.CrossRef 26. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 165-71.CrossRef
27.
Zurück zum Zitat 27. J. Qu, Q. Jin and B. Xu: Int. J. Plast., 2005, vol. 21, pp. 1267-302.CrossRef 27. J. Qu, Q. Jin and B. Xu: Int. J. Plast., 2005, vol. 21, pp. 1267-302.CrossRef
28.
Zurück zum Zitat 28. F. Roters, D. Raabe, and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181-89.CrossRef 28. F. Roters, D. Raabe, and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181-89.CrossRef
29.
Zurück zum Zitat 29. E. Puchi-Cabrera, J. Guérin, J. La Barbera-Sosa, M. Dubar, and L. Dubar: Int. J. Plast., 2018, vol. 108, pp. 70-87.CrossRef 29. E. Puchi-Cabrera, J. Guérin, J. La Barbera-Sosa, M. Dubar, and L. Dubar: Int. J. Plast., 2018, vol. 108, pp. 70-87.CrossRef
30.
Zurück zum Zitat 30. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2013, vol. 51, pp. 145-60.CrossRef 30. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2013, vol. 51, pp. 145-60.CrossRef
31.
Zurück zum Zitat 31. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2014, vol. 54, pp. 113-31.CrossRef 31. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2014, vol. 54, pp. 113-31.CrossRef
32.
Zurück zum Zitat 32. E.S. Puchi-Cabrera, J.-D. Guérin, M. Dubar, M.H. Staia, J. Lesage, and D. Chicot: Mater. Des., 2014, vol. 62, pp. 255-64.CrossRef 32. E.S. Puchi-Cabrera, J.-D. Guérin, M. Dubar, M.H. Staia, J. Lesage, and D. Chicot: Mater. Des., 2014, vol. 62, pp. 255-64.CrossRef
34.
Zurück zum Zitat C. Krill Iii and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3059–75. C. Krill Iii and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3059–75.
35.
Zurück zum Zitat 35. V. Tikare, E. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363-71.CrossRef 35. V. Tikare, E. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363-71.CrossRef
36.
Zurück zum Zitat 36. P. Zhao, T.S.E. Low, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2016, vol. 80, pp. 38-55.CrossRef 36. P. Zhao, T.S.E. Low, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2016, vol. 80, pp. 38-55.CrossRef
37.
Zurück zum Zitat 37. M. Bernacki, Y. Chastel, T. Coupez, and R.E. Logé: Scripta Mater., 2008, vol. 58, pp. 1129-32.CrossRef 37. M. Bernacki, Y. Chastel, T. Coupez, and R.E. Logé: Scripta Mater., 2008, vol. 58, pp. 1129-32.CrossRef
38.
Zurück zum Zitat 38. M. Bernacki, R.E. Logé, and T. Coupez: Scripta Mater., 2011, vol. 64, pp. 525-28.CrossRef 38. M. Bernacki, R.E. Logé, and T. Coupez: Scripta Mater., 2011, vol. 64, pp. 525-28.CrossRef
39.
Zurück zum Zitat 39. H. Hallberg: Modell. Simul. Mater. Sci. Eng., 2013, vol. 21, p. 085012.CrossRef 39. H. Hallberg: Modell. Simul. Mater. Sci. Eng., 2013, vol. 21, p. 085012.CrossRef
40.
Zurück zum Zitat 40. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, and M. Bernacki: Comput. Mater. Sci., 2015, vol. 109, pp. 388-98.CrossRef 40. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, and M. Bernacki: Comput. Mater. Sci., 2015, vol. 109, pp. 388-98.CrossRef
41.
Zurück zum Zitat 41. S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee: Acta Mater., 2013, vol. 61, pp. 7251-59.CrossRef 41. S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee: Acta Mater., 2013, vol. 61, pp. 7251-59.CrossRef
42.
Zurück zum Zitat 42. O. Ivasishin, S. Shevchenko, N. Vasiliev, and S. Semiatin: Mater. Sci. Eng. A, 2006, vol. 433, pp. 216-32.CrossRef 42. O. Ivasishin, S. Shevchenko, N. Vasiliev, and S. Semiatin: Mater. Sci. Eng. A, 2006, vol. 433, pp. 216-32.CrossRef
43.
Zurück zum Zitat 43. D. Srolovitz, G. Grest, and M. Anderson: Acta Metall., 1986, vol. 34, pp. 1833-45.CrossRef 43. D. Srolovitz, G. Grest, and M. Anderson: Acta Metall., 1986, vol. 34, pp. 1833-45.CrossRef
44.
Zurück zum Zitat 44. D. Srolovitz, G. Grest, M. Anderson, and A. Rollett: Acta Metall., 1988, vol. 36, pp. 2115-28.CrossRef 44. D. Srolovitz, G. Grest, M. Anderson, and A. Rollett: Acta Metall., 1988, vol. 36, pp. 2115-28.CrossRef
45.
Zurück zum Zitat 45. K. Kawasaki, T. Nagai, and K. Nakashima: Philos. Mag. B, 1989, vol. 60, pp. 399-421.CrossRef 45. K. Kawasaki, T. Nagai, and K. Nakashima: Philos. Mag. B, 1989, vol. 60, pp. 399-421.CrossRef
46.
Zurück zum Zitat 46. D. Weygand, Y. Brechet, and J. Lepinoux: Philos. Mag. B, 1998, vol. 78, pp. 329-52.CrossRef 46. D. Weygand, Y. Brechet, and J. Lepinoux: Philos. Mag. B, 1998, vol. 78, pp. 329-52.CrossRef
47.
Zurück zum Zitat 47. P. Asadi, M.K.B. Givi, and M. Akbari: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 301-11.CrossRef 47. P. Asadi, M.K.B. Givi, and M. Akbari: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 301-11.CrossRef
48.
Zurück zum Zitat 48. M. Azarbarmas and M. Aghaie-Khafri: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1916-30.CrossRef 48. M. Azarbarmas and M. Aghaie-Khafri: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1916-30.CrossRef
49.
Zurück zum Zitat 49. M. Azarbarmas, S. Mirjavadi, A. Ghasemi, and A. Hamouda: Metals, 2018, vol. 8, p. 923.CrossRef 49. M. Azarbarmas, S. Mirjavadi, A. Ghasemi, and A. Hamouda: Metals, 2018, vol. 8, p. 923.CrossRef
50.
Zurück zum Zitat 50. M.S. Chen, W.Q. Yuan, Y. Lin, H.B. Li, and Z.H. Zou: Vacuum, 2017, vol. 146, pp. 142-51.CrossRef 50. M.S. Chen, W.Q. Yuan, Y. Lin, H.B. Li, and Z.H. Zou: Vacuum, 2017, vol. 146, pp. 142-51.CrossRef
51.
52.
Zurück zum Zitat 52. R. Ding and Z. Guo: Comput. Mater. Sci., 2002, vol. 23, pp. 209-18.CrossRef 52. R. Ding and Z. Guo: Comput. Mater. Sci., 2002, vol. 23, pp. 209-18.CrossRef
53.
Zurück zum Zitat 53. R. Goetz and V. Seetharaman: Scripta Mater., 1998, vol. 38, pp. 405-13.CrossRef 53. R. Goetz and V. Seetharaman: Scripta Mater., 1998, vol. 38, pp. 405-13.CrossRef
54.
55.
Zurück zum Zitat 55. Ł. Łach, J. Nowak, and D. Svyetlichnyy: J. Mater. Process. Technol., 2018, vol. 255, pp. 488-99.CrossRef 55. Ł. Łach, J. Nowak, and D. Svyetlichnyy: J. Mater. Process. Technol., 2018, vol. 255, pp. 488-99.CrossRef
56.
Zurück zum Zitat H. Li, C. Wu, and H. Yang: Int. J. Plast., 2013, pp. 271–91. H. Li, C. Wu, and H. Yang: Int. J. Plast., 2013, pp. 271–91.
57.
Zurück zum Zitat 57. L. Madej, M. Sitko, A. Legwand, K. Perzynski, and K. Michalik: J. Comput. Sci., 2018, vol. 26, pp. 66-77.CrossRef 57. L. Madej, M. Sitko, A. Legwand, K. Perzynski, and K. Michalik: J. Comput. Sci., 2018, vol. 26, pp. 66-77.CrossRef
58.
Zurück zum Zitat 58. J. Majta, Ł. Madej, D.S. Svyetlichnyy, K. Perzyński, M. Kwiecień, and K. Muszka: Mater. Sci. Eng. A, 2016, vol. 671, pp. 204-13.CrossRef 58. J. Majta, Ł. Madej, D.S. Svyetlichnyy, K. Perzyński, M. Kwiecień, and K. Muszka: Mater. Sci. Eng. A, 2016, vol. 671, pp. 204-13.CrossRef
59.
Zurück zum Zitat 59. E. Popova, Y. Staraselski, A. Brahme, R. Mishra, and K. Inal: Int. J. Plast., 2015, vol. 66, pp. 85-102.CrossRef 59. E. Popova, Y. Staraselski, A. Brahme, R. Mishra, and K. Inal: Int. J. Plast., 2015, vol. 66, pp. 85-102.CrossRef
60.
62.
Zurück zum Zitat 62. D. Raabe and A. Godara: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 733-51.CrossRef 62. D. Raabe and A. Godara: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 733-51.CrossRef
63.
Zurück zum Zitat 63. A. Samanta, N. Shen, H. Ji, W. Wang, J. Li, and H. Ding: J. Manuf. Sci. Eng., 2018, vol. 140, p. 031016.CrossRef 63. A. Samanta, N. Shen, H. Ji, W. Wang, J. Li, and H. Ding: J. Manuf. Sci. Eng., 2018, vol. 140, p. 031016.CrossRef
64.
Zurück zum Zitat 64. N. Shen, A. Samanta, and H. Ding: Procedia CIRP, 2017, vol. 58, pp. 543-48.CrossRef 64. N. Shen, A. Samanta, and H. Ding: Procedia CIRP, 2017, vol. 58, pp. 543-48.CrossRef
65.
66.
Zurück zum Zitat 66. D.S. Svyetlichnyy: Comput. Mater. Sci., 2012, vol. 60, pp. 153-62.CrossRef 66. D.S. Svyetlichnyy: Comput. Mater. Sci., 2012, vol. 60, pp. 153-62.CrossRef
67.
Zurück zum Zitat 67. D.S. Svyetlichnyy: Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 085001.CrossRef 67. D.S. Svyetlichnyy: Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 085001.CrossRef
68.
Zurück zum Zitat 68. N. Xiao, C. Zheng, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 41, pp. 366-74.CrossRef 68. N. Xiao, C. Zheng, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 41, pp. 366-74.CrossRef
69.
Zurück zum Zitat 69. N. Yazdipour, C.H. Davies, and P.D. Hodgson: Comput. Mater. Sci., 2008, vol. 44, pp. 566-76.CrossRef 69. N. Yazdipour, C.H. Davies, and P.D. Hodgson: Comput. Mater. Sci., 2008, vol. 44, pp. 566-76.CrossRef
70.
71.
Zurück zum Zitat 71. C. Zheng, D. Raabe, and D. Li: Acta Mater., 2012, vol. 60, pp. 4768-79.CrossRef 71. C. Zheng, D. Raabe, and D. Li: Acta Mater., 2012, vol. 60, pp. 4768-79.CrossRef
72.
Zurück zum Zitat 72. C. Zheng, N. Xiao, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 44, pp. 507-14.CrossRef 72. C. Zheng, N. Xiao, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 44, pp. 507-14.CrossRef
73.
Zurück zum Zitat 73. X. Zhou, H. Zhang, G. Wang, X. Bai, Y. Fu, and J. Zhao: J. Mater. Sci., 2016, vol. 51, pp. 6735-49.CrossRef 73. X. Zhou, H. Zhang, G. Wang, X. Bai, Y. Fu, and J. Zhao: J. Mater. Sci., 2016, vol. 51, pp. 6735-49.CrossRef
74.
Zurück zum Zitat 74. F. Chen and Z. Cui: Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 045008.CrossRef 74. F. Chen and Z. Cui: Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 045008.CrossRef
75.
Zurück zum Zitat 75. F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5539-49.CrossRef 75. F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5539-49.CrossRef
76.
Zurück zum Zitat 76. F. Chen, Z. Cui, J. Liu, X. Zhang, and W. Chen: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 075015.CrossRef 76. F. Chen, Z. Cui, J. Liu, X. Zhang, and W. Chen: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 075015.CrossRef
77.
Zurück zum Zitat 77. F. Chen, Z. Cui, H. Ou, and H. Long: Appl. Phys. A, 2016, vol. 122, p. 890.CrossRef 77. F. Chen, Z. Cui, H. Ou, and H. Long: Appl. Phys. A, 2016, vol. 122, p. 890.CrossRef
78.
Zurück zum Zitat 78. F. Chen, K. Qi, Z. Cui, and X. Lai: Comput. Mater. Sci., 2014, vol. 83, pp. 331-40.CrossRef 78. F. Chen, K. Qi, Z. Cui, and X. Lai: Comput. Mater. Sci., 2014, vol. 83, pp. 331-40.CrossRef
79.
Zurück zum Zitat 79. R. Fisher, L. Darken, and K. Carroll: Acta Metall., 1954, vol. 2, pp. 368-73.CrossRef 79. R. Fisher, L. Darken, and K. Carroll: Acta Metall., 1954, vol. 2, pp. 368-73.CrossRef
80.
Zurück zum Zitat 80. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.CrossRef 80. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.CrossRef
81.
Zurück zum Zitat 81. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.CrossRef 81. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.CrossRef
82.
Zurück zum Zitat 82. R. Zhang, Z. Wang, Z. Shi, B. Wang, and W. Fu: Strength. Mater., 2015, vol. 47, pp. 94-99.CrossRef 82. R. Zhang, Z. Wang, Z. Shi, B. Wang, and W. Fu: Strength. Mater., 2015, vol. 47, pp. 94-99.CrossRef
83.
Zurück zum Zitat 83. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664-72.CrossRef 83. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664-72.CrossRef
84.
Zurück zum Zitat 84. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359-70.CrossRef 84. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359-70.CrossRef
85.
Zurück zum Zitat 85. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, and Z. Zhou: Mater. Des., 2014, vol. 64, pp. 374-80.CrossRef 85. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, and Z. Zhou: Mater. Des., 2014, vol. 64, pp. 374-80.CrossRef
Metadaten
Titel
Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework
verfasst von
Fei Chen
Huajia Zhu
Haiming Zhang
Zhenshan Cui
Publikationsdatum
06.01.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05620-3

Weitere Artikel der Ausgabe 3/2020

Metallurgical and Materials Transactions A 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.