Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2016

01.03.2016 | Original Article

Metabolic profile of mixed culture acidogenic fermentation of lignocellulosic residues and the effect of upstream substrate fractionation by steam explosion

verfasst von: Anastasios Perimenis, Ingrid M. van Aarle, Thomas Nicolay, Nicolas Jacquet, Laurence Meyer, Aurore Richel, Patrick A. Gerin

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lignocellulosic biomass residues have attracted attention for the sustainable production of molecules for material and energetic use through biochemical conversion. Their recalcitrant structure prevents a broader use and asks for the development of sustainable techniques that can efficiently separate, recover and valorize the constituting components. In a cascading concept, residual streams of such processes can be further exploited in an attempt to valorize the largest possible fraction of the initial material. Three lignocellulosic substrates, namely dried sugar beet pulp, wheat bran and miscanthus straw, were upstream fractionated by steam explosion to extract the hemicellulose fraction. This study evaluated the valorization of the residual solid fraction through mixed acidogenic fermentation for the production of volatile fatty acids (VFA) as platform chemicals. Batch experiments have been conducted for the reference material (non-treated) and the solid fraction remaining after steam explosion, with and without the addition of an external mixed inoculum. Steam explosion residues contained less hemicellulose than the initial materials. The difference in the fermentation profile between steam explosion residues and non-treated substrates is dependent on the substrate. Maximum total VFA (tVFA) concentration was 18.8 gCOD/kgmixed_liquor, and maximum yield of chemical oxygen demand (COD) conversion into tVFA was 33 % for the case of non-treated inoculated beet pulp.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Technol 100:2562–2568 Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Technol 100:2562–2568
2.
Zurück zum Zitat Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900CrossRef Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900CrossRef
3.
Zurück zum Zitat Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482CrossRef
4.
Zurück zum Zitat Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
5.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
6.
Zurück zum Zitat Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 9:162–1651CrossRef Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 9:162–1651CrossRef
7.
Zurück zum Zitat Guo P, Mochidzuki K, Cheng W, Zhou M, Gao H, Zheng D, Wang X, Cui Z (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102:7526–7531CrossRef Guo P, Mochidzuki K, Cheng W, Zhou M, Gao H, Zheng D, Wang X, Cui Z (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102:7526–7531CrossRef
8.
Zurück zum Zitat Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crop Prod 31:28–33CrossRef Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crop Prod 31:28–33CrossRef
9.
Zurück zum Zitat Viola E, Zimbardi F, Cardinale M, Cardinale G, Braccio G, Gambacorta E (2008) Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour Technol 99:681–689CrossRef Viola E, Zimbardi F, Cardinale M, Cardinale G, Braccio G, Gambacorta E (2008) Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour Technol 99:681–689CrossRef
10.
Zurück zum Zitat Wang J, Yue ZB, Chen TH, Peng SC, Yu HQ, Chen HZ (2010) Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Bioresour Technol 101:6610–6614CrossRef Wang J, Yue ZB, Chen TH, Peng SC, Yu HQ, Chen HZ (2010) Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Bioresour Technol 101:6610–6614CrossRef
11.
Zurück zum Zitat Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef
12.
Zurück zum Zitat Sabiha-Hanim S, Mohd Noor MA, Rosma A (2015) Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydr Polym 115:533–539CrossRef Sabiha-Hanim S, Mohd Noor MA, Rosma A (2015) Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydr Polym 115:533–539CrossRef
13.
Zurück zum Zitat Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264CrossRef Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264CrossRef
14.
Zurück zum Zitat Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351CrossRef Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351CrossRef
15.
Zurück zum Zitat de la Rubia MA, Raposo F, Rincón B, Borja R (2009) Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol 100:4133–4138CrossRef de la Rubia MA, Raposo F, Rincón B, Borja R (2009) Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol 100:4133–4138CrossRef
16.
Zurück zum Zitat Doğan E, Demirer GN (2009) Volatile fatty acid production from organic fraction of municipal solid waste through anaerobic acidogenic digestion. Environ Eng Sci 26:1443–1450CrossRef Doğan E, Demirer GN (2009) Volatile fatty acid production from organic fraction of municipal solid waste through anaerobic acidogenic digestion. Environ Eng Sci 26:1443–1450CrossRef
17.
Zurück zum Zitat Kim W, Hwang K, Shin SG, Lee S, Hwang S (2010) Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum. Bioresour Technol 101(Suppl 1):S17–22CrossRef Kim W, Hwang K, Shin SG, Lee S, Hwang S (2010) Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum. Bioresour Technol 101(Suppl 1):S17–22CrossRef
18.
Zurück zum Zitat Alkaya Eand Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters. Biomass Bioenergy 35:32–39CrossRef Alkaya Eand Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters. Biomass Bioenergy 35:32–39CrossRef
19.
Zurück zum Zitat Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99CrossRef Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99CrossRef
20.
Zurück zum Zitat Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174CrossRef Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174CrossRef
21.
Zurück zum Zitat Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valor 4:557–581CrossRef Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valor 4:557–581CrossRef
22.
Zurück zum Zitat Temudo MF, Poldermans R, Kleerebezem R, van Loosdrecht MCM (2008) Glycerol fermentation by (open) mixed cultures: A chemostat study. Biotechnol Bioeng 100:1088–1098CrossRef Temudo MF, Poldermans R, Kleerebezem R, van Loosdrecht MCM (2008) Glycerol fermentation by (open) mixed cultures: A chemostat study. Biotechnol Bioeng 100:1088–1098CrossRef
23.
Zurück zum Zitat Schmidt JK, Riedele C, Regestein L, Rausenberger J, Reichl U (2011) A novel concept combining experimental and mathematical analysis for the identification of unknown interspecies effects in a mixed culture. Biotechnol Bioeng 108:1900–1911CrossRef Schmidt JK, Riedele C, Regestein L, Rausenberger J, Reichl U (2011) A novel concept combining experimental and mathematical analysis for the identification of unknown interspecies effects in a mixed culture. Biotechnol Bioeng 108:1900–1911CrossRef
24.
Zurück zum Zitat Reisinger M, Tirpanalan O, Prückler M, Huber F, Kneifel W, Novalin S (2013) Wheat bran biorefinery - A detailed investigation on hydrothermal and enzymatic treatment. Bioresour Technol 144:179–185CrossRef Reisinger M, Tirpanalan O, Prückler M, Huber F, Kneifel W, Novalin S (2013) Wheat bran biorefinery - A detailed investigation on hydrothermal and enzymatic treatment. Bioresour Technol 144:179–185CrossRef
25.
Zurück zum Zitat Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T (2014) Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J 9:483–492CrossRef Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T (2014) Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J 9:483–492CrossRef
26.
Zurück zum Zitat Mayer F, Gerin P, Noo A et al (2014) Assessment of energy crops alternative to maize for biogas production in the Greater Region. Bioresour Technol 166:358–367CrossRef Mayer F, Gerin P, Noo A et al (2014) Assessment of energy crops alternative to maize for biogas production in the Greater Region. Bioresour Technol 166:358–367CrossRef
27.
Zurück zum Zitat Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77:47–54CrossRef Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77:47–54CrossRef
28.
Zurück zum Zitat Vignon MR, Garcia-Jaldon C, Dupeyre D (1995) Steam explosion of woody hemp chènevotte. Int J BiolMacromol 17:395–404CrossRef Vignon MR, Garcia-Jaldon C, Dupeyre D (1995) Steam explosion of woody hemp chènevotte. Int J BiolMacromol 17:395–404CrossRef
29.
Zurück zum Zitat Liu H, Wang J, Liu X, Fu B, Chen J, Yu HQ (2012) Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res 46:799–807CrossRef Liu H, Wang J, Liu X, Fu B, Chen J, Yu HQ (2012) Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res 46:799–807CrossRef
30.
Zurück zum Zitat Clescerl LS, Greenberg AE, Eaton AD (1999) Standard Methods for Examination of Water & Wastewater, 20th edn. Am Public Health Assoc, Washington, DC Clescerl LS, Greenberg AE, Eaton AD (1999) Standard Methods for Examination of Water & Wastewater, 20th edn. Am Public Health Assoc, Washington, DC
31.
Zurück zum Zitat Escarnot E, Agneessens R, Wathelet B, Paquot M (2010) Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem 122:857–863CrossRef Escarnot E, Agneessens R, Wathelet B, Paquot M (2010) Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem 122:857–863CrossRef
32.
Zurück zum Zitat Vanderghem C, Brostaux Y, Jacquet N, Blecker C, Paquot M (2012) Optimization of formic/acetic acid delignification of Miscanthus × giganteus for enzymatic hydrolysis using response surface methodology. Ind Crop Prod 35:280–286CrossRef Vanderghem C, Brostaux Y, Jacquet N, Blecker C, Paquot M (2012) Optimization of formic/acetic acid delignification of Miscanthus × giganteus for enzymatic hydrolysis using response surface methodology. Ind Crop Prod 35:280–286CrossRef
33.
Zurück zum Zitat Combo AMM, Aguedo M, Quiévy N, Danthine S, Goffin D, Jacquet N, Blecker C, Devaux J, Paquot M (2013) Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int J Biol Macromol 148:52–156 Combo AMM, Aguedo M, Quiévy N, Danthine S, Goffin D, Jacquet N, Blecker C, Devaux J, Paquot M (2013) Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int J Biol Macromol 148:52–156
34.
Zurück zum Zitat Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299CrossRef Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299CrossRef
35.
Zurück zum Zitat Chang J, Cheng W, Yin Q, Zuo R, Song A, Zheng Q, Wang P, Wang X, Liu J (2012) Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Bioresour Technol 104:587–592CrossRef Chang J, Cheng W, Yin Q, Zuo R, Song A, Zheng Q, Wang P, Wang X, Liu J (2012) Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Bioresour Technol 104:587–592CrossRef
36.
Zurück zum Zitat Estevez MM, Linjordet R, Morken J (2012) Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour Technol 104:749–756CrossRef Estevez MM, Linjordet R, Morken J (2012) Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour Technol 104:749–756CrossRef
37.
Zurück zum Zitat Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113CrossRef Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113CrossRef
38.
Zurück zum Zitat Chen Y, Jiang S, Yuan H, Zhou Q, Gu G (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res 41:683–689CrossRef Chen Y, Jiang S, Yuan H, Zhou Q, Gu G (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res 41:683–689CrossRef
39.
Zurück zum Zitat Rajagopal R, Béline F (2011) Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential. Bioresour Technol 102:5653–5658CrossRef Rajagopal R, Béline F (2011) Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential. Bioresour Technol 102:5653–5658CrossRef
40.
Zurück zum Zitat Bruni E, Jensen AP, Angelidaki I (2010) Steam treatment of digested biofibers for increasing biogas production. Bioresour Technol 101:7668–7671CrossRef Bruni E, Jensen AP, Angelidaki I (2010) Steam treatment of digested biofibers for increasing biogas production. Bioresour Technol 101:7668–7671CrossRef
41.
Zurück zum Zitat Borja R, Sánchez E, Rincón B, Raposo R, Martı́n MA, Martı́n A (2005) Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace. Process Biochem 40:281–291CrossRef Borja R, Sánchez E, Rincón B, Raposo R, Martı́n MA, Martı́n A (2005) Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace. Process Biochem 40:281–291CrossRef
42.
Zurück zum Zitat Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213CrossRef Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213CrossRef
43.
Zurück zum Zitat Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biotechnol 79:673–677CrossRef Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biotechnol 79:673–677CrossRef
44.
Zurück zum Zitat Han SK, Shin SH (2002) Enhanced acidogenic fermentation of food waste in a continuous-flow reactor. Waste Manag Res 20:110–118CrossRef Han SK, Shin SH (2002) Enhanced acidogenic fermentation of food waste in a continuous-flow reactor. Waste Manag Res 20:110–118CrossRef
45.
Zurück zum Zitat Jones DTand Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524 Jones DTand Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524
46.
Zurück zum Zitat Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic Digestion Model No 1 (ADM1). IWA Publishing, London Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic Digestion Model No 1 (ADM1). IWA Publishing, London
47.
Zurück zum Zitat Batstone DJ and Jensen PD (2011) Anaerobic Processes. In:Wilderer P (ed) Treatise on water science. Elsevier, Oxford, pp 615‑639 Batstone DJ and Jensen PD (2011) Anaerobic Processes. In:Wilderer P (ed) Treatise on water science. Elsevier, Oxford, pp 615‑639
48.
Zurück zum Zitat Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499CrossRef Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499CrossRef
49.
Zurück zum Zitat Traverso P, Pavan P, Bolzonella D, Innocenti L, Cecchi F, Mata-Alvarez J (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414CrossRef Traverso P, Pavan P, Bolzonella D, Innocenti L, Cecchi F, Mata-Alvarez J (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414CrossRef
51.
Zurück zum Zitat López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904CrossRef López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904CrossRef
Metadaten
Titel
Metabolic profile of mixed culture acidogenic fermentation of lignocellulosic residues and the effect of upstream substrate fractionation by steam explosion
verfasst von
Anastasios Perimenis
Ingrid M. van Aarle
Thomas Nicolay
Nicolas Jacquet
Laurence Meyer
Aurore Richel
Patrick A. Gerin
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2016
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0164-8

Weitere Artikel der Ausgabe 1/2016

Biomass Conversion and Biorefinery 1/2016 Zur Ausgabe