Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions

verfasst von : Kazuyuki Shimizu

Erschienen in: Bioreactor Engineering Research and Industrial Applications I

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP–Crp, Cra, Csr, Fis, PII(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jone RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548CrossRef Jone RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548CrossRef
2.
Zurück zum Zitat Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707CrossRef Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707CrossRef
3.
Zurück zum Zitat Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482CrossRef Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482CrossRef
4.
Zurück zum Zitat Folger O et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501CrossRef Folger O et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501CrossRef
5.
Zurück zum Zitat McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632CrossRef McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632CrossRef
6.
Zurück zum Zitat Dolfing J, Jiang B, Henstra AM, Stams AJ, Plugge CM (2008) Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131CrossRef Dolfing J, Jiang B, Henstra AM, Stams AJ, Plugge CM (2008) Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131CrossRef
7.
Zurück zum Zitat Lin LH et al (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482CrossRef Lin LH et al (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482CrossRef
8.
Zurück zum Zitat Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328CrossRef Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328CrossRef
9.
Zurück zum Zitat Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90CrossRef Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90CrossRef
10.
Zurück zum Zitat Yim H et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef Yim H et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef
11.
Zurück zum Zitat Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359CrossRef Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359CrossRef
12.
Zurück zum Zitat Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227CrossRef Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227CrossRef
13.
Zurück zum Zitat Shen CR et al (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915CrossRef Shen CR et al (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915CrossRef
14.
Zurück zum Zitat Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRef Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRef
15.
Zurück zum Zitat Shimizu K (2014) Biofuels and biochemicals production by microbes. NOVA Publishing Co., USA Shimizu K (2014) Biofuels and biochemicals production by microbes. NOVA Publishing Co., USA
16.
Zurück zum Zitat Bar-Even A, Flamholz A, Noor E, Mil R (2012) Rethinking of glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8:509–517CrossRef Bar-Even A, Flamholz A, Noor E, Mil R (2012) Rethinking of glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8:509–517CrossRef
17.
Zurück zum Zitat Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. PNAS USA 110(24):10039–10044CrossRef Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. PNAS USA 110(24):10039–10044CrossRef
18.
Zurück zum Zitat Shimizu K (2013) Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochemistry, doi:10.1155/2013/645983 (Article ID 645983) Shimizu K (2013) Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochemistry, doi:10.​1155/​2013/​645983 (Article ID 645983)
19.
Zurück zum Zitat Shimizu K (2014) Metabolic regulation of Escherichia coli in response to nutrient limitation and environmental stress conditions. Metabolites 4:1–35CrossRef Shimizu K (2014) Metabolic regulation of Escherichia coli in response to nutrient limitation and environmental stress conditions. Metabolites 4:1–35CrossRef
20.
Zurück zum Zitat Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev 12:327–340 Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev 12:327–340
21.
Zurück zum Zitat de la Cruz MA, Fernandez-Mora M, Guadarrama C et al (2007) LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66(3):727–743CrossRef de la Cruz MA, Fernandez-Mora M, Guadarrama C et al (2007) LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66(3):727–743CrossRef
22.
Zurück zum Zitat Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656CrossRef Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656CrossRef
23.
Zurück zum Zitat Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49(1):1–32 Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49(1):1–32
24.
Zurück zum Zitat Death A, Ferenci T (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176(16):5101–5107 Death A, Ferenci T (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176(16):5101–5107
25.
Zurück zum Zitat Gunnewijk MGW, van den Bogaard PTC, Veenhoff LM et al (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J Mol Microbiol Biotechnol 3(3):401–413 Gunnewijk MGW, van den Bogaard PTC, Veenhoff LM et al (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J Mol Microbiol Biotechnol 3(3):401–413
26.
Zurück zum Zitat Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophy Acta 1183(1):5–39CrossRef Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim Biophy Acta 1183(1):5–39CrossRef
27.
Zurück zum Zitat Deutscher J, Francke C, Postoma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031CrossRef Deutscher J, Francke C, Postoma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031CrossRef
28.
Zurück zum Zitat Palm K, Luthman K, Ros J, Grasjo J, Artursson P (1999) Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J Pharmacol Exp Ther 291:435–443 Palm K, Luthman K, Ros J, Grasjo J, Artursson P (1999) Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J Pharmacol Exp Ther 291:435–443
29.
Zurück zum Zitat Chakrabarti AC, Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111:171–177CrossRef Chakrabarti AC, Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111:171–177CrossRef
30.
Zurück zum Zitat Chakrabarti AC, Deamer DW (1994) Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation. J Mol Evol 39:1–5 Chakrabarti AC, Deamer DW (1994) Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation. J Mol Evol 39:1–5
31.
Zurück zum Zitat Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68:127–135CrossRef Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68:127–135CrossRef
32.
Zurück zum Zitat Winiwarter S et al (1998) Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem 41:4939–4949CrossRef Winiwarter S et al (1998) Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem 41:4939–4949CrossRef
33.
Zurück zum Zitat Davis BD (1958) On the importance of being ionized. Arch Biochem Biophys 78:497–509CrossRef Davis BD (1958) On the importance of being ionized. Arch Biochem Biophys 78:497–509CrossRef
34.
Zurück zum Zitat Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178CrossRef Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178CrossRef
35.
Zurück zum Zitat Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624CrossRef Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624CrossRef
37.
Zurück zum Zitat Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14CrossRef Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14CrossRef
38.
Zurück zum Zitat Hogema BM, Arents JC, Bader R, Eijkemans K et al (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in deter-mining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30:487–498CrossRef Hogema BM, Arents JC, Bader R, Eijkemans K et al (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in deter-mining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30:487–498CrossRef
39.
Zurück zum Zitat Bettenbrock K, Sauter T, Jahreis K, Klemling A, Lengeler JW, Gilles ED (2007) Correlation be-tween growth rates, EIIACrr phosphorylation, and intra-cellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 189:6891–6900CrossRef Bettenbrock K, Sauter T, Jahreis K, Klemling A, Lengeler JW, Gilles ED (2007) Correlation be-tween growth rates, EIIACrr phosphorylation, and intra-cellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 189:6891–6900CrossRef
40.
Zurück zum Zitat Schaub J, Reuss M (2008) In vivo dynamics of glycolysis in E. coli shows need for gowth-rate dependent metabolome analysis. Biotechnol Prog 24:1402–1407CrossRef Schaub J, Reuss M (2008) In vivo dynamics of glycolysis in E. coli shows need for gowth-rate dependent metabolome analysis. Biotechnol Prog 24:1402–1407CrossRef
41.
Zurück zum Zitat Kochanowski K, Volkmer B, Gerosa L, van Rijsewijk HBR, Schmidt A, Heinemann M (2013) Functioning of a metabolic flux sensor in Escherichia coli. PNAS USA 110:1130–1135CrossRef Kochanowski K, Volkmer B, Gerosa L, van Rijsewijk HBR, Schmidt A, Heinemann M (2013) Functioning of a metabolic flux sensor in Escherichia coli. PNAS USA 110:1130–1135CrossRef
42.
Zurück zum Zitat Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355CrossRef Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6:355CrossRef
43.
Zurück zum Zitat Huberts DH, Niebel B, Heinemann M (2012) A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res 12(2):118–128CrossRef Huberts DH, Niebel B, Heinemann M (2012) A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res 12(2):118–128CrossRef
44.
Zurück zum Zitat Kremling A, Bettenbrock K, Gilles ED (2008) A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics 24:704–710CrossRef Kremling A, Bettenbrock K, Gilles ED (2008) A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics 24:704–710CrossRef
45.
Zurück zum Zitat Matsuoka Y, Shimizu K (2013) Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol 168:155–173CrossRef Matsuoka Y, Shimizu K (2013) Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol 168:155–173CrossRef
46.
Zurück zum Zitat Shimada T, Yamamoto K, Ishihama A (2011) Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 193(3):649–659CrossRef Shimada T, Yamamoto K, Ishihama A (2011) Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 193(3):649–659CrossRef
47.
Zurück zum Zitat Saier MH Jr, Ramseier TM (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417 Saier MH Jr, Ramseier TM (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417
48.
Zurück zum Zitat Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597CrossRef Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597CrossRef
49.
Zurück zum Zitat Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166CrossRef Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166CrossRef
50.
Zurück zum Zitat Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 10:67CrossRef Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 10:67CrossRef
51.
Zurück zum Zitat Wolf RE, Prather DM, Shea FM (1979) Growth-rate dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12. J Bacteriol 139:1093–1096 Wolf RE, Prather DM, Shea FM (1979) Growth-rate dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12. J Bacteriol 139:1093–1096
52.
Zurück zum Zitat Wong MS, Wu S, Causey TB, Bennet GN, San KY (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108CrossRef Wong MS, Wu S, Causey TB, Bennet GN, San KY (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108CrossRef
53.
Zurück zum Zitat Russel JB et al (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11CrossRef Russel JB et al (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11CrossRef
54.
Zurück zum Zitat Valgepea K, Adamberg K, Vilu R (2011) Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting. BMC Syst Biol 5:106CrossRef Valgepea K, Adamberg K, Vilu R (2011) Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting. BMC Syst Biol 5:106CrossRef
55.
Zurück zum Zitat Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate dependent metabolic efficiency at steady state. Microbiology 151:693–706CrossRef Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate dependent metabolic efficiency at steady state. Microbiology 151:693–706CrossRef
56.
Zurück zum Zitat Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50CrossRef Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50CrossRef
57.
Zurück zum Zitat Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotech Bioeng 35:732–738CrossRef Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotech Bioeng 35:732–738CrossRef
58.
Zurück zum Zitat Yang C, Hua Q, Baba T, Mori H et al (2003) Analysis of E. coli anaplerotic metabolism and its regulation mechanism from the metabolic responses to alter dilution rates and pck knockout. Biotechnol Bioeng 84:129–144CrossRef Yang C, Hua Q, Baba T, Mori H et al (2003) Analysis of E. coli anaplerotic metabolism and its regulation mechanism from the metabolic responses to alter dilution rates and pck knockout. Biotechnol Bioeng 84:129–144CrossRef
59.
Zurück zum Zitat Lee SY (1996) High cell-density cultivation of Escherichia coli. Trends Biotechnol 14:98–105CrossRef Lee SY (1996) High cell-density cultivation of Escherichia coli. Trends Biotechnol 14:98–105CrossRef
60.
Zurück zum Zitat Hardiman T, Lemuth K, Keller MA, Reuss M, Siemann-Herzberg M (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132:359–374CrossRef Hardiman T, Lemuth K, Keller MA, Reuss M, Siemann-Herzberg M (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132:359–374CrossRef
61.
Zurück zum Zitat Konstantinov K, Kishimoto M, Seki T, Yoshida T (1990) A balanced DO-stat and its application to the control of acetic acid excretion by recombinant Eshcherichia coli. Biotechnol Bioeng 36(7):750–758CrossRef Konstantinov K, Kishimoto M, Seki T, Yoshida T (1990) A balanced DO-stat and its application to the control of acetic acid excretion by recombinant Eshcherichia coli. Biotechnol Bioeng 36(7):750–758CrossRef
62.
Zurück zum Zitat Ferreira AR, Ataide F, von Stosch M, Jias JML et al (2012) Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 35(9):1603–1614CrossRef Ferreira AR, Ataide F, von Stosch M, Jias JML et al (2012) Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 35(9):1603–1614CrossRef
63.
Zurück zum Zitat Li K-T, Liu D-H, Chu J, Wang Y-H et al (2008) An efficient and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess Byosyst Eng 31:605–610CrossRef Li K-T, Liu D-H, Chu J, Wang Y-H et al (2008) An efficient and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess Byosyst Eng 31:605–610CrossRef
64.
Zurück zum Zitat Pirt SJ (1982) Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol 133:300–302CrossRef Pirt SJ (1982) Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol 133:300–302CrossRef
65.
Zurück zum Zitat Hewitt, CJ, Caron NV, Nienow AW, McFarlane CM (1999) Use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotechnol Bioeng 63:705–711 Hewitt, CJ, Caron NV, Nienow AW, McFarlane CM (1999) Use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotechnol Bioeng 63:705–711
66.
Zurück zum Zitat Hewitt CJ, Caron NV, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70(4):381–390 Hewitt CJ, Caron NV, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70(4):381–390
67.
Zurück zum Zitat Hewitt CJ, Nebe-Von-Caron G (2001) An industrial application of multiparameter flow cytometry: Assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44:179–187CrossRef Hewitt CJ, Nebe-Von-Caron G (2001) An industrial application of multiparameter flow cytometry: Assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44:179–187CrossRef
68.
Zurück zum Zitat Peebo K, Valgepea K, Nahku R, Riis G, Õun M, Adamberg K, Vilu R (2014) Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol, doi: 10.1007/s00253-014-5613-y Peebo K, Valgepea K, Nahku R, Riis G, Õun M, Adamberg K, Vilu R (2014) Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol, doi: 10.​1007/​s00253-014-5613-y
69.
Zurück zum Zitat Vasudevan P, Briggs M (2008) Biodiesel production–current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430CrossRef Vasudevan P, Briggs M (2008) Biodiesel production–current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430CrossRef
70.
Zurück zum Zitat Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829CrossRef Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829CrossRef
71.
Zurück zum Zitat Clomburg JM, Gonzalez Ramon (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28CrossRef Clomburg JM, Gonzalez Ramon (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28CrossRef
72.
Zurück zum Zitat Almeida JRM, Fávaro LCL, Betania F, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48CrossRef Almeida JRM, Fávaro LCL, Betania F, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48CrossRef
73.
Zurück zum Zitat Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Micob Cell Fact 11:46CrossRef Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Micob Cell Fact 11:46CrossRef
74.
Zurück zum Zitat Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178CrossRef Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178CrossRef
75.
Zurück zum Zitat Oh MK, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286CrossRef Oh MK, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286CrossRef
76.
Zurück zum Zitat Applebee MK, Joyce AR, Conrad TM, Pettigrew DW, Palsson BO (2011) Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. J Biol Chem 286(26):23150–23159CrossRef Applebee MK, Joyce AR, Conrad TM, Pettigrew DW, Palsson BO (2011) Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. J Biol Chem 286(26):23150–23159CrossRef
77.
Zurück zum Zitat Cheng K-K, Lee B-S, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M (2014) Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5:3233 Cheng K-K, Lee B-S, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M (2014) Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5:3233
78.
Zurück zum Zitat Kornberg HL (2001) Routes for fructose utilization by Escherichia coli. J Mol Microbiol Biotechnol 3:355–359 Kornberg HL (2001) Routes for fructose utilization by Escherichia coli. J Mol Microbiol Biotechnol 3:355–359
79.
Zurück zum Zitat Yao R, Kurata H, Shimizu K (2013) Effect of cra gene mutation on the metabolism of Escherichia coli for a mixture of multiple carbon sources. Adv Biosci Biotechnol 4:477−486 Yao R, Kurata H, Shimizu K (2013) Effect of cra gene mutation on the metabolism of Escherichia coli for a mixture of multiple carbon sources. Adv Biosci Biotechnol 4:477−486
80.
Zurück zum Zitat Sarkar D, Shimizu K (2008) Effect of cra gene knockout together with other genes knockouts on the improvement of substrate consumption rate in Escherichia coli under microaerobic conditions. Biochem Eng J 42:224–228CrossRef Sarkar D, Shimizu K (2008) Effect of cra gene knockout together with other genes knockouts on the improvement of substrate consumption rate in Escherichia coli under microaerobic conditions. Biochem Eng J 42:224–228CrossRef
81.
Zurück zum Zitat Sarkar D, Siddiquee KAZ, Arauzo-Bravo MJ, Oba T, Shimizu K (2008) Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch Microbiol 190:559–571CrossRef Sarkar D, Siddiquee KAZ, Arauzo-Bravo MJ, Oba T, Shimizu K (2008) Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch Microbiol 190:559–571CrossRef
82.
Zurück zum Zitat Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr (1997) Cra-mediated regulations of Escherichia coli adenylate cyclase. Microbiology 143:785–792CrossRef Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr (1997) Cra-mediated regulations of Escherichia coli adenylate cyclase. Microbiology 143:785–792CrossRef
83.
Zurück zum Zitat Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695CrossRef Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ (1992) Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–695CrossRef
84.
Zurück zum Zitat Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ (1995) Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels 3:117–128 Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ (1995) Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels 3:117–128
85.
Zurück zum Zitat Song S, Park C (1997) Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179:7025–7032 Song S, Park C (1997) Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179:7025–7032
86.
Zurück zum Zitat Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600CrossRef Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600CrossRef
87.
Zurück zum Zitat Novotny CP, Englesberg E (1966) The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta 117:217–230CrossRef Novotny CP, Englesberg E (1966) The L-arabinose permease system in Escherichia coli B/r. Biochim Biophys Acta 117:217–230CrossRef
88.
Zurück zum Zitat Schleif R (1969) An L-arabinose binding protein and arabinose permeation in Escherichia coli. J Mol Biol 46:185–196CrossRef Schleif R (1969) An L-arabinose binding protein and arabinose permeation in Escherichia coli. J Mol Biol 46:185–196CrossRef
89.
Zurück zum Zitat Doyle ME, Brown C, Hogg RW, Helling RB (1972) Induction of the ara operon of Escherichia coli B-r. J Bacteriol 110:56–65 Doyle ME, Brown C, Hogg RW, Helling RB (1972) Induction of the ara operon of Escherichia coli B-r. J Bacteriol 110:56–65
90.
Zurück zum Zitat Davidson CJ, Narang A, Surette MG (2010) Integration of transcriptional inputs at promoters of the arabinose catabolic pathway. BMC Syst Biol 4:75CrossRef Davidson CJ, Narang A, Surette MG (2010) Integration of transcriptional inputs at promoters of the arabinose catabolic pathway. BMC Syst Biol 4:75CrossRef
91.
Zurück zum Zitat Madar D, Dekel E, Bren A, Alon U (2011) Negative auto-regulation increases the input dynamical-range of the arabinose system of Escherichia coli. BMC Syst Biol 5:111CrossRef Madar D, Dekel E, Bren A, Alon U (2011) Negative auto-regulation increases the input dynamical-range of the arabinose system of Escherichia coli. BMC Syst Biol 5:111CrossRef
92.
Zurück zum Zitat Desai TA, Rao CV (2010) Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol 76:1524–1532CrossRef Desai TA, Rao CV (2010) Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol 76:1524–1532CrossRef
93.
Zurück zum Zitat Groff D, Benke PI, Batth TS, Bokinsky G, Petzold CJ, Adams PD, Keasling JD (2012) Supplementation of intracellular XylR leads to co-utilization of hemicellulose sugars. Appl Environ Microbiol 78:2221–2229CrossRef Groff D, Benke PI, Batth TS, Bokinsky G, Petzold CJ, Adams PD, Keasling JD (2012) Supplementation of intracellular XylR leads to co-utilization of hemicellulose sugars. Appl Environ Microbiol 78:2221–2229CrossRef
94.
Zurück zum Zitat Toya Y, Ishii N, Nakahigashi K, Tomita M, Shimizu K (2010) 13C-metabolic flux analysis for batch culture of Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnol Prog 26:975–992 Toya Y, Ishii N, Nakahigashi K, Tomita M, Shimizu K (2010) 13C-metabolic flux analysis for batch culture of Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnol Prog 26:975–992
95.
Zurück zum Zitat Schuetz R, Zamboni N, Zampieri M, Heinemann M et al (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604 Schuetz R, Zamboni N, Zampieri M, Heinemann M et al (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604
96.
Zurück zum Zitat Enjalbert B, Letisse F, Portais J-C (2013) Physiological and molecular timing of the glucose to acetate transition in Escherichia coli. Metabolites 3:820–837CrossRef Enjalbert B, Letisse F, Portais J-C (2013) Physiological and molecular timing of the glucose to acetate transition in Escherichia coli. Metabolites 3:820–837CrossRef
97.
Zurück zum Zitat Xu Y-F, Amador-Noguez D, Reaves ML, Feng XJ et al (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8:562–568CrossRef Xu Y-F, Amador-Noguez D, Reaves ML, Feng XJ et al (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8:562–568CrossRef
98.
Zurück zum Zitat Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370 Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370
99.
Zurück zum Zitat Bradley MD, Beach MB, Jason de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–2940CrossRef Bradley MD, Beach MB, Jason de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–2940CrossRef
100.
Zurück zum Zitat Mallik P, Pratt TS, Beach MB, Bradley MD, Undamatla J, Osuna R (2004) Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 186:122–135CrossRef Mallik P, Pratt TS, Beach MB, Bradley MD, Undamatla J, Osuna R (2004) Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 186:122–135CrossRef
101.
Zurück zum Zitat Mallik P, Paul BJ, Rutherford ST, Gourse RL, Osuna R (2006) DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J Bacteriol 188:5775–5782CrossRef Mallik P, Paul BJ, Rutherford ST, Gourse RL, Osuna R (2006) DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J Bacteriol 188:5775–5782CrossRef
102.
Zurück zum Zitat Paul BJ, Berkmen MB, Gourse RL (2005) DksA potentiates direct activation of amino acid promoters by ppGpp. PNAS USA 102:7823–7828CrossRef Paul BJ, Berkmen MB, Gourse RL (2005) DksA potentiates direct activation of amino acid promoters by ppGpp. PNAS USA 102:7823–7828CrossRef
103.
Zurück zum Zitat Ferenci T (2001) Hungry bacteria—definition and properties of a nutritional state. Environ Microbiol 3:605–611CrossRef Ferenci T (2001) Hungry bacteria—definition and properties of a nutritional state. Environ Microbiol 3:605–611CrossRef
104.
Zurück zum Zitat Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14(1):45–54CrossRef Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14(1):45–54CrossRef
105.
Zurück zum Zitat Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, Yokoyama S (2004) Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299–310CrossRef Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, Yokoyama S (2004) Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299–310CrossRef
106.
Zurück zum Zitat Kanjee U, Ogata K, Houry WA (2012) Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Micobiol 85(6):1029–1043CrossRef Kanjee U, Ogata K, Houry WA (2012) Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Micobiol 85(6):1029–1043CrossRef
107.
Zurück zum Zitat Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395CrossRef Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395CrossRef
108.
Zurück zum Zitat Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genom 272(5):580–591CrossRef Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genom 272(5):580–591CrossRef
109.
Zurück zum Zitat Jishage M, Kvint K, Shingler V, Nystrom T (2002) Regulation of σ factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270CrossRef Jishage M, Kvint K, Shingler V, Nystrom T (2002) Regulation of σ factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270CrossRef
110.
Zurück zum Zitat Lacour S, Landini P (2004) σ S -dependent gene expression at the onset of stationary phase in Escherichia coli: function of σ s -dependent genes and identification of their promoter sequences. J of Bacteriol 186(21):7186–7195CrossRef Lacour S, Landini P (2004) σ S -dependent gene expression at the onset of stationary phase in Escherichia coli: function of σ s -dependent genes and identification of their promoter sequences. J of Bacteriol 186(21):7186–7195CrossRef
111.
Zurück zum Zitat Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE (2004) RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J of Bacteriol 186(24):8499–8507CrossRef Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE (2004) RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J of Bacteriol 186(24):8499–8507CrossRef
112.
Zurück zum Zitat Rahman M, Shimizu K (2008) Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Mol BioSyst 4(2):160–169CrossRef Rahman M, Shimizu K (2008) Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Mol BioSyst 4(2):160–169CrossRef
113.
Zurück zum Zitat Rahman M, Hasan MM, Shimizu K (2008) Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnol Lett 30:853–860CrossRef Rahman M, Hasan MM, Shimizu K (2008) Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnol Lett 30:853–860CrossRef
114.
Zurück zum Zitat Llorens NJM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495CrossRef Llorens NJM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495CrossRef
115.
Zurück zum Zitat Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nyström T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4:400–404CrossRef Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nyström T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4:400–404CrossRef
116.
Zurück zum Zitat Nagamitsu H, Murata M, Kosaka T, Kawaguchi J, Mori H, Yamada M (2013) Crucial roles of MicA and RybB as vital factors for σE-Dependent cell lysis in Escherichia coli long-term stationary phase. J Mol Microbiol Biotechnol 23:227–232CrossRef Nagamitsu H, Murata M, Kosaka T, Kawaguchi J, Mori H, Yamada M (2013) Crucial roles of MicA and RybB as vital factors for σE-Dependent cell lysis in Escherichia coli long-term stationary phase. J Mol Microbiol Biotechnol 23:227–232CrossRef
117.
Zurück zum Zitat Murata M, Noor R, Nagamitsu H, Tanaka S, Yamada M (2012) Novel pathway directed by sigma E to cause cell lysis in Escherichia coli. Genes Cells 17:234–247CrossRef Murata M, Noor R, Nagamitsu H, Tanaka S, Yamada M (2012) Novel pathway directed by sigma E to cause cell lysis in Escherichia coli. Genes Cells 17:234–247CrossRef
118.
Zurück zum Zitat Noor R, Murata M, Yamada M (2009) Oxidative stress as a trigger for growth phase-specific sigma E-dependent cell lysis in Escherichia coli. J Mol Microbiol Biotechnol 17:177–187CrossRef Noor R, Murata M, Yamada M (2009) Oxidative stress as a trigger for growth phase-specific sigma E-dependent cell lysis in Escherichia coli. J Mol Microbiol Biotechnol 17:177–187CrossRef
119.
Zurück zum Zitat Yamamotoya T, Dose H, Tian Z, Faure A, Toya Y, Honma M, Igarashi K, Nakahigashi K, Soga T, Mori H, Matsuno H (2012) Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim Biophys Acta 1824:1442–1448CrossRef Yamamotoya T, Dose H, Tian Z, Faure A, Toya Y, Honma M, Igarashi K, Nakahigashi K, Soga T, Mori H, Matsuno H (2012) Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim Biophys Acta 1824:1442–1448CrossRef
120.
Zurück zum Zitat Timmermans J, van Melderen L (2010) Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 67(17):2897–2908CrossRef Timmermans J, van Melderen L (2010) Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 67(17):2897–2908CrossRef
121.
Zurück zum Zitat Jonas K, Edwards AN, Ahmad I, Romeo T, Romling U, Melefors O (2010) Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella typhimurium. Environ Microbiol 12(2):524–540CrossRef Jonas K, Edwards AN, Ahmad I, Romeo T, Romling U, Melefors O (2010) Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella typhimurium. Environ Microbiol 12(2):524–540CrossRef
122.
Zurück zum Zitat Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 64(6):1605–1620CrossRef Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 64(6):1605–1620CrossRef
123.
Zurück zum Zitat Romeo T, Vakulskas CA, Babitzke P (2013) Post-transcriptional regulation on a global scale: from and function of Csr/Rsm systems. Environ Microbiol 15(2):313–324 Romeo T, Vakulskas CA, Babitzke P (2013) Post-transcriptional regulation on a global scale: from and function of Csr/Rsm systems. Environ Microbiol 15(2):313–324
124.
Zurück zum Zitat Dubey AK, Baker CS, Romeo T, Babitzke P (2005) RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11(10):1579–1587CrossRef Dubey AK, Baker CS, Romeo T, Babitzke P (2005) RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11(10):1579–1587CrossRef
125.
Zurück zum Zitat Suzuki K, Wang X, Weilbacher T et al (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J of Bacteriol 184(18):5130–5140CrossRef Suzuki K, Wang X, Weilbacher T et al (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J of Bacteriol 184(18):5130–5140CrossRef
126.
Zurück zum Zitat Weilbacher T, Suzuki K, Dubey AK et al (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48(3):657–670CrossRef Weilbacher T, Suzuki K, Dubey AK et al (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48(3):657–670CrossRef
127.
Zurück zum Zitat Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44(6):1599–1610CrossRef Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44(6):1599–1610CrossRef
128.
Zurück zum Zitat Dong T, Schellhorn HE (2009) Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281:19–33CrossRef Dong T, Schellhorn HE (2009) Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281:19–33CrossRef
129.
Zurück zum Zitat Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D et al (2011) Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80:1561–1580CrossRef Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D et al (2011) Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80:1561–1580CrossRef
130.
Zurück zum Zitat McKee AE, Rutherford BJ, Chivian DC, Baidoo EK, Juminaga D, Kuo D, Benke PI, Dietrich JA, Ma SM, Arkin AP, Petzold CJ, Adams PD, Keasling JD, Chhabra SR (2012) Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 11:79CrossRef McKee AE, Rutherford BJ, Chivian DC, Baidoo EK, Juminaga D, Kuo D, Benke PI, Dietrich JA, Ma SM, Arkin AP, Petzold CJ, Adams PD, Keasling JD, Chhabra SR (2012) Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 11:79CrossRef
131.
Zurück zum Zitat Revelles O, Millard P, Nougayrede J-P, Dpbrindt U, Osward E, Letisse F, Portais, J-C (2013) The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917. Plos One 8(6):e66386 (1–12) Revelles O, Millard P, Nougayrede J-P, Dpbrindt U, Osward E, Letisse F, Portais, J-C (2013) The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917. Plos One 8(6):e66386 (1–12)
132.
Zurück zum Zitat Tatarko M, Romeo T (2001) Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Current Microbiol 43(1):26–32CrossRef Tatarko M, Romeo T (2001) Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Current Microbiol 43(1):26–32CrossRef
133.
Zurück zum Zitat Van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77(4):628–695CrossRef Van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77(4):628–695CrossRef
134.
Zurück zum Zitat Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T (2012) Need-based activation of ammonium uptake in Escherichia coli. Mol Syst Biol 8:616 Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T (2012) Need-based activation of ammonium uptake in Escherichia coli. Mol Syst Biol 8:616
135.
Zurück zum Zitat Gruswitz F, O’Connell J, Stroud RM (2007) Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. PNAS USA 104:42–47CrossRef Gruswitz F, O’Connell J, Stroud RM (2007) Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. PNAS USA 104:42–47CrossRef
136.
Zurück zum Zitat Radchenko MV, Thornton J, Merrick M (2010) Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem 285:31037–31045CrossRef Radchenko MV, Thornton J, Merrick M (2010) Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem 285:31037–31045CrossRef
137.
Zurück zum Zitat Truan D, Huergo LF, Chubatsu LS, Merrick M, Li XD, Winkler FK (2010) A new P(II) protein structure identifies the 2-oxoglutarate binding site. J Mol Biol 400:531–539CrossRef Truan D, Huergo LF, Chubatsu LS, Merrick M, Li XD, Winkler FK (2010) A new P(II) protein structure identifies the 2-oxoglutarate binding site. J Mol Biol 400:531–539CrossRef
138.
Zurück zum Zitat Yuan J, Doucette CD, Fowler WU, Feng X-J, Piazza M, Rabitz HA, Wingreen NS, Rabinowitz JD (2009) Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol Syst Biol 5:302CrossRef Yuan J, Doucette CD, Fowler WU, Feng X-J, Piazza M, Rabitz HA, Wingreen NS, Rabinowitz JD (2009) Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol Syst Biol 5:302CrossRef
139.
Zurück zum Zitat Ninfa AJ, Jiang P, Atkinson MR, Peliska JA (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Topics Cell Regul 36:31–75CrossRef Ninfa AJ, Jiang P, Atkinson MR, Peliska JA (2000) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Topics Cell Regul 36:31–75CrossRef
140.
Zurück zum Zitat Gerosa L, Kochanowski K, Heinemann M, Sauer U (2013) Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 9:658CrossRef Gerosa L, Kochanowski K, Heinemann M, Sauer U (2013) Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 9:658CrossRef
141.
Zurück zum Zitat Kiupakis AK, Reitzer L (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184(11):2940–2950CrossRef Kiupakis AK, Reitzer L (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184(11):2940–2950CrossRef
142.
Zurück zum Zitat Commichau FM, Forchhammer K, Stulke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9(2):167–172CrossRef Commichau FM, Forchhammer K, Stulke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9(2):167–172CrossRef
143.
Zurück zum Zitat Mao XJ, Huo YX, Buck M, Kolb A, Wang YP (2007) Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Res 35(5):1432–1440CrossRef Mao XJ, Huo YX, Buck M, Kolb A, Wang YP (2007) Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Res 35(5):1432–1440CrossRef
144.
Zurück zum Zitat Kumar R, Shimizu K (2010) Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microb Cell Fact 9:8 Kumar R, Shimizu K (2010) Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microb Cell Fact 9:8
145.
Zurück zum Zitat Jiang P, Ninfa AJ (2007) Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 46(45):12979–12996CrossRef Jiang P, Ninfa AJ (2007) Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 46(45):12979–12996CrossRef
146.
Zurück zum Zitat Ninfa J, Jiang P (2005) PII signal transduction proteins: sensors of -ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8(2):168–173CrossRef Ninfa J, Jiang P (2005) PII signal transduction proteins: sensors of -ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8(2):168–173CrossRef
147.
Zurück zum Zitat Brauer MJ, Yuan J, Bennet BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. PNAS USA 103:19302–19307CrossRef Brauer MJ, Yuan J, Bennet BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. PNAS USA 103:19302–19307CrossRef
148.
Zurück zum Zitat Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U (2011) Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. Moleculae Cell 41:117–127CrossRef Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U (2011) Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. Moleculae Cell 41:117–127CrossRef
149.
Zurück zum Zitat Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011) Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme i inhibition. Nat Chem Biol 7:894–901CrossRef Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011) Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme i inhibition. Nat Chem Biol 7:894–901CrossRef
150.
Zurück zum Zitat You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism by cyclic AMP signaling. Nature 500:301–306CrossRef You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism by cyclic AMP signaling. Nature 500:301–306CrossRef
151.
Zurück zum Zitat Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X et al (1995) Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839CrossRef Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X et al (1995) Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839CrossRef
152.
Zurück zum Zitat Peterkofski A, Wang G, Seok Y-J (2006) Parallel PTS systems. Arch Biochem Biophys 453(1):101–107CrossRef Peterkofski A, Wang G, Seok Y-J (2006) Parallel PTS systems. Arch Biochem Biophys 453(1):101–107CrossRef
153.
Zurück zum Zitat Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trend Microbiol 18(5):205–214CrossRef Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trend Microbiol 18(5):205–214CrossRef
154.
Zurück zum Zitat Lee CR, Cho SH, Yoon MJ, Peterkofsky A, Seok YJ (2007) Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. PNAS USA 104:4124–4129CrossRef Lee CR, Cho SH, Yoon MJ, Peterkofsky A, Seok YJ (2007) Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. PNAS USA 104:4124–4129CrossRef
155.
Zurück zum Zitat Lüttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Görke B (2009) Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIANtr in Escherichia coli. Mol Micobiol 72(4):978–994CrossRef Lüttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Görke B (2009) Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIANtr in Escherichia coli. Mol Micobiol 72(4):978–994CrossRef
156.
Zurück zum Zitat Lee C-R, Cho S-H, Kim H-J, Kim M, Peterkofsky A, Seok Y-J (2010) Potassium mediates Escherichia coli enzyme IIANtr-dependent regulation of sigma factor selectivity. Mol Microbiol 78(6):1468–1483CrossRef Lee C-R, Cho S-H, Kim H-J, Kim M, Peterkofsky A, Seok Y-J (2010) Potassium mediates Escherichia coli enzyme IIANtr-dependent regulation of sigma factor selectivity. Mol Microbiol 78(6):1468–1483CrossRef
157.
Zurück zum Zitat Lüttmann D, Göpel Y, Görke B (2012) The phosphotransferase protein EIIANtr modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86(1):96–110CrossRef Lüttmann D, Göpel Y, Görke B (2012) The phosphotransferase protein EIIANtr modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86(1):96–110CrossRef
158.
Zurück zum Zitat Kim H-J, Lee C-R, Kim M, Peterkofsky A, Seok Y-J (2011) Dephosphorylated NPr of the nitrogen PTS regulates lipid a biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun 409(3):556–561CrossRef Kim H-J, Lee C-R, Kim M, Peterkofsky A, Seok Y-J (2011) Dephosphorylated NPr of the nitrogen PTS regulates lipid a biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun 409(3):556–561CrossRef
159.
Zurück zum Zitat Lee C-R, Park Y-H, Kim M, Kim Y-R, Park S, Peterkofsky A, Seok Y-J (2013) Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol 88(3):473–485CrossRef Lee C-R, Park Y-H, Kim M, Kim Y-R, Park S, Peterkofsky A, Seok Y-J (2013) Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol 88(3):473–485CrossRef
160.
Zurück zum Zitat Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM (2002) The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 43:1347–1358CrossRef Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM (2002) The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 43:1347–1358CrossRef
161.
Zurück zum Zitat Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HH (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington DC, pp 514–527 Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HH (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. ASM Press, Washington DC, pp 514–527
162.
Zurück zum Zitat Iwanicka-Nowicka R, Hryniewicz MM (1995) A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166:11–17CrossRef Iwanicka-Nowicka R, Hryniewicz MM (1995) A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166:11–17CrossRef
163.
Zurück zum Zitat Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky BJ, Peter R, Bender A, Kustu S (2000) Nitrogen regulatory protein controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. PNAS USA 97:14674–14679CrossRef Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky BJ, Peter R, Bender A, Kustu S (2000) Nitrogen regulatory protein controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. PNAS USA 97:14674–14679CrossRef
164.
Zurück zum Zitat Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S (2005) Sulfur and Nitrogen Limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187(3):1074–1090CrossRef Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S (2005) Sulfur and Nitrogen Limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187(3):1074–1090CrossRef
165.
Zurück zum Zitat Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt FC, Curtiss IIIR, Ingraham JL et al (eds) Escherichia coli and salmonella: cellular and molecular biology, pp 1357–1381. ASM Press, Washington DC Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt FC, Curtiss IIIR, Ingraham JL et al (eds) Escherichia coli and salmonella: cellular and molecular biology, pp 1357–1381. ASM Press, Washington DC
166.
Zurück zum Zitat Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cellr Biochem 51(1):47–54CrossRef Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cellr Biochem 51(1):47–54CrossRef
167.
Zurück zum Zitat Baek JH, Lee SY (2007) Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17(2):244–252 Baek JH, Lee SY (2007) Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17(2):244–252
168.
Zurück zum Zitat Van Dien SJ, Keasling JD (1998) A dynamic model of the Escherichia coli phosphate-starvation response. J Theoret Biol 190(1):37–49CrossRef Van Dien SJ, Keasling JD (1998) A dynamic model of the Escherichia coli phosphate-starvation response. J Theoret Biol 190(1):37–49CrossRef
169.
Zurück zum Zitat Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR gene knockout mutants under phosphate and nitrogen limitations as well as acidic condition. Microb Cell Fact 10:39CrossRef Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR gene knockout mutants under phosphate and nitrogen limitations as well as acidic condition. Microb Cell Fact 10:39CrossRef
170.
Zurück zum Zitat Spira B, Silberstein N, Yagil E (1995) Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol 177(14):4053–4058 Spira B, Silberstein N, Yagil E (1995) Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol 177(14):4053–4058
171.
Zurück zum Zitat Frey PA, Reed GH (2012) The ubiquity of iron. ACS Chem Biol 7:1477–1481CrossRef Frey PA, Reed GH (2012) The ubiquity of iron. ACS Chem Biol 7:1477–1481CrossRef
172.
Zurück zum Zitat Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17CrossRef Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17CrossRef
173.
Zurück zum Zitat Dann CEIII, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winker WC (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892CrossRef Dann CEIII, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winker WC (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892CrossRef
174.
175.
Zurück zum Zitat Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Biotechnol 181:4639–4643 Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Biotechnol 181:4639–4643
176.
Zurück zum Zitat McHugh JP, Rodríguez-Quiñones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli. J Biol Chem 278:29478–29486CrossRef McHugh JP, Rodríguez-Quiñones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli. J Biol Chem 278:29478–29486CrossRef
177.
Zurück zum Zitat Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRef Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRef
178.
Zurück zum Zitat Jovanovic G, Lloyde LJ, Stumpf MP, Mayhew AJ, Buck M (2006) Induction and function of the phase shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 281:21147–21161 Jovanovic G, Lloyde LJ, Stumpf MP, Mayhew AJ, Buck M (2006) Induction and function of the phase shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 281:21147–21161
179.
Zurück zum Zitat Blanchard JR, Wholey WY, Conlon EM, Pomposiello PJ (2007) Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS dependent and independent transcriptional network. PLoS One 2:e1186CrossRef Blanchard JR, Wholey WY, Conlon EM, Pomposiello PJ (2007) Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS dependent and independent transcriptional network. PLoS One 2:e1186CrossRef
180.
Zurück zum Zitat Brynildsen MP, Liao JC (2009) An integrated network approach indentifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:34CrossRef Brynildsen MP, Liao JC (2009) An integrated network approach indentifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:34CrossRef
181.
Zurück zum Zitat Braun V, Hantke K, Koster W (1998) Bacterial ion transport: mechanisms, genetics, and regulation. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 67–145 Braun V, Hantke K, Koster W (1998) Bacterial ion transport: mechanisms, genetics, and regulation. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 67–145
182.
Zurück zum Zitat Azpiroz MF, Lavińa M (2004) Involvement of enterobactin synthesis pathway in production of Microcin H47. Antimicrob Agents Chemother 48:1235–1241CrossRef Azpiroz MF, Lavińa M (2004) Involvement of enterobactin synthesis pathway in production of Microcin H47. Antimicrob Agents Chemother 48:1235–1241CrossRef
183.
Zurück zum Zitat Semsey S, Andersson AM, Krishna S, Jensen MH, Masse E, Sneppen K (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 34:4960–4967CrossRef Semsey S, Andersson AM, Krishna S, Jensen MH, Masse E, Sneppen K (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 34:4960–4967CrossRef
184.
Zurück zum Zitat Hantash FM, Ammerlaan M, Earhart CF (1997) Enterobactin synthase polypeptides of Escherichia coli are present in an osmotic-shock-sensitive cytoplasmic locality. Microbiol 143:147–156CrossRef Hantash FM, Ammerlaan M, Earhart CF (1997) Enterobactin synthase polypeptides of Escherichia coli are present in an osmotic-shock-sensitive cytoplasmic locality. Microbiol 143:147–156CrossRef
185.
Zurück zum Zitat Kumar R, Shimizu K (2011) Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Microb Cell Fact 10:3CrossRef Kumar R, Shimizu K (2011) Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Microb Cell Fact 10:3CrossRef
186.
Zurück zum Zitat Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980–990CrossRef Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980–990CrossRef
187.
Zurück zum Zitat Perera IC, Grove A (2010) Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol 2:243–254CrossRef Perera IC, Grove A (2010) Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol 2:243–254CrossRef
188.
Zurück zum Zitat Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, Zeng S, Chen X, Chan J, He C, Chen PR (2014) The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol 10:21–28CrossRef Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, Zeng S, Chen X, Chan J, He C, Chen PR (2014) The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol 10:21–28CrossRef
189.
Zurück zum Zitat Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19(3):109–114CrossRef Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19(3):109–114CrossRef
190.
Zurück zum Zitat Gaudu P, Weiss B (1996) SoxR, a [2Fe–2S] transcription factor, is active only in its oxidized form. PNAS USA 93(19):10094–10098CrossRef Gaudu P, Weiss B (1996) SoxR, a [2Fe–2S] transcription factor, is active only in its oxidized form. PNAS USA 93(19):10094–10098CrossRef
191.
Zurück zum Zitat Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier RR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. Plos One 2(8):e690CrossRef Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier RR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. Plos One 2(8):e690CrossRef
192.
Zurück zum Zitat DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109CrossRef DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109CrossRef
193.
Zurück zum Zitat Son J et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105CrossRef Son J et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105CrossRef
194.
Zurück zum Zitat Maddocks OD et al (2013) Serine starvation induces stress and p53-dependent metabolic remodeling in cancer cells. Nature 493:542–546CrossRef Maddocks OD et al (2013) Serine starvation induces stress and p53-dependent metabolic remodeling in cancer cells. Nature 493:542–546CrossRef
195.
Zurück zum Zitat Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach ? Nat Rev Drug Discov 8:579–591CrossRef Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach ? Nat Rev Drug Discov 8:579–591CrossRef
196.
Zurück zum Zitat Gunsalus RP (1992) Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174(22):7069–7074 Gunsalus RP (1992) Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174(22):7069–7074
197.
Zurück zum Zitat Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278(32):29837–29855CrossRef Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278(32):29837–29855CrossRef
198.
Zurück zum Zitat Alexeeva S, Hellingwerf KJ, de Mattos MJT (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185(1):204–209CrossRef Alexeeva S, Hellingwerf KJ, de Mattos MJT (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185(1):204–209CrossRef
199.
Zurück zum Zitat Zhu J, Shalel-Levanon S, Bennett G, San KY (2006) Effect of the global redox sensing/ regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab Eng 8(6):619–627CrossRef Zhu J, Shalel-Levanon S, Bennett G, San KY (2006) Effect of the global redox sensing/ regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab Eng 8(6):619–627CrossRef
200.
Zurück zum Zitat Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292(5525):2314–2316CrossRef Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292(5525):2314–2316CrossRef
201.
Zurück zum Zitat Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. PNAS USA 101(36):13318–13323CrossRef Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. PNAS USA 101(36):13318–13323CrossRef
202.
Zurück zum Zitat Constantinidou C, Hobman JL, Grifiths L, Patel MD, Penn CW, Cole JA, Overton TW (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281(8):4802–4815CrossRef Constantinidou C, Hobman JL, Grifiths L, Patel MD, Penn CW, Cole JA, Overton TW (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281(8):4802–4815CrossRef
203.
Zurück zum Zitat Kessler D, Knappe J (1996) Anaerobic dissimilation of pyruvate. In: Neidhardt FC, Curtiss R, Ingraham JI et al (eds) E. Coli and salmonella: cellular and molecular biology, 2nd edn, vol 1, pp 199–205. ASM Press, Washington, DC Kessler D, Knappe J (1996) Anaerobic dissimilation of pyruvate. In: Neidhardt FC, Curtiss R, Ingraham JI et al (eds) E. Coli and salmonella: cellular and molecular biology, 2nd edn, vol 1, pp 199–205. ASM Press, Washington, DC
204.
Zurück zum Zitat Toya Y, Nakahigashi K, Tomita M, Shimizu K (2012) Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol Biosyst 8:2593–2604CrossRef Toya Y, Nakahigashi K, Tomita M, Shimizu K (2012) Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol Biosyst 8:2593–2604CrossRef
205.
Zurück zum Zitat Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890CrossRef Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890CrossRef
206.
Zurück zum Zitat Zhu J, Shimizu K (200) The effect of pfl genes knockout on the metabolism for optically pure d-lactate production by Escherichia coli. Applied Microbiol Biotechnol 64:367–75 Zhu J, Shimizu K (200) The effect of pfl genes knockout on the metabolism for optically pure d-lactate production by Escherichia coli. Applied Microbiol Biotechnol 64:367–75
207.
Zurück zum Zitat Zhu J, Shimizu K (2005) Effect of a single-gene knockout on the metabolic regulation in E. coli for d-lactate production under microaerobic conditions. Metabolic Eng 7:104–115CrossRef Zhu J, Shimizu K (2005) Effect of a single-gene knockout on the metabolic regulation in E. coli for d-lactate production under microaerobic conditions. Metabolic Eng 7:104–115CrossRef
208.
Zurück zum Zitat Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661CrossRef Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661CrossRef
209.
Zurück zum Zitat Valgepea K, Adamberg K, Seiman A, Vilu R (2014) Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol BioSyst 9:2344–2358CrossRef Valgepea K, Adamberg K, Seiman A, Vilu R (2014) Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol BioSyst 9:2344–2358CrossRef
210.
Zurück zum Zitat Nizam SA, Zhu J, Ho PY, Shimizu K (2009) Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J 44(2–3):240–250CrossRef Nizam SA, Zhu J, Ho PY, Shimizu K (2009) Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J 44(2–3):240–250CrossRef
211.
Zurück zum Zitat Vemuri GN, Eiteman MA, Altman E (2006) Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng 94(3):538–542CrossRef Vemuri GN, Eiteman MA, Altman E (2006) Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng 94(3):538–542CrossRef
212.
Zurück zum Zitat Nizam SA, Shimizu K (2008) Effects of arc A and arc B genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions. Biocheml Eng J 42:229–236CrossRef Nizam SA, Shimizu K (2008) Effects of arc A and arc B genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions. Biocheml Eng J 42:229–236CrossRef
213.
Zurück zum Zitat Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2(11):898–907CrossRef Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2(11):898–907CrossRef
214.
Zurück zum Zitat Stincone A, Daudi N, Rahman AS et al (2011) A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 39(17):7512–7528 Stincone A, Daudi N, Rahman AS et al (2011) A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 39(17):7512–7528
215.
Zurück zum Zitat Richard HT, Foster JW (2003) Acid resistance in Escherichia coli. Adv Appl Microbiol 52:167–186CrossRef Richard HT, Foster JW (2003) Acid resistance in Escherichia coli. Adv Appl Microbiol 52:167–186CrossRef
216.
Zurück zum Zitat Richard HT, Foster JW (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 86(18):6032–6041CrossRef Richard HT, Foster JW (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 86(18):6032–6041CrossRef
217.
Zurück zum Zitat Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine: agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185(15):4402–4409CrossRef Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine: agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185(15):4402–4409CrossRef
218.
Zurück zum Zitat Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561CrossRef Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561CrossRef
219.
Zurück zum Zitat Martin-Galiano AJ, Ferrandiz MJ, de La Campa AG (2001) The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumonia is inducible by pH. Molr Microbiol 41:327–338 Martin-Galiano AJ, Ferrandiz MJ, de La Campa AG (2001) The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumonia is inducible by pH. Molr Microbiol 41:327–338
220.
Zurück zum Zitat Castanie-Cornet MP, Foster JW (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiol 147:709–715CrossRef Castanie-Cornet MP, Foster JW (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiol 147:709–715CrossRef
221.
Zurück zum Zitat Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microb Cell Fact 10:39CrossRef Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microb Cell Fact 10:39CrossRef
222.
Zurück zum Zitat Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. PNAS USA 87(16):6181–6185CrossRef Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. PNAS USA 87(16):6181–6185CrossRef
223.
Zurück zum Zitat Suziedeliene E, Suziedelis K, Garbenciute V, Normark S (1999) The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol 181(7):2084–2093 Suziedeliene E, Suziedelis K, Garbenciute V, Normark S (1999) The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol 181(7):2084–2093
224.
Zurück zum Zitat Wu X, Altman R, Eiteman MA, Altman E (2013) Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli. J Biol Eng 7:3CrossRef Wu X, Altman R, Eiteman MA, Altman E (2013) Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli. J Biol Eng 7:3CrossRef
225.
Zurück zum Zitat Kitagawa M, Miyakawa M, Matsumura Y, Tsuchido T (2002) Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem 269(12):2907–2917CrossRef Kitagawa M, Miyakawa M, Matsumura Y, Tsuchido T (2002) Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem 269(12):2907–2917CrossRef
226.
Zurück zum Zitat Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1CrossRef Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1CrossRef
227.
Zurück zum Zitat Hoffmann F, Weber J, Rinas U (2002 Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80(3):313–319 Hoffmann F, Weber J, Rinas U (2002 Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80(3):313–319
228.
Zurück zum Zitat Tilly K, Erickson J, Sharma S, Georgopoulos C (1986) Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol 168(3):1155–1158 Tilly K, Erickson J, Sharma S, Georgopoulos C (1986) Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol 168(3):1155–1158
229.
Zurück zum Zitat Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor 32. J Bacteriol 171(3):1585–1589 Tilly K, Spence J, Georgopoulos C (1989) Modulation of stability of the Escherichia coli heat shock regulatory factor 32. J Bacteriol 171(3):1585–1589
230.
Zurück zum Zitat Shin D, Lim S, Seok YJ, Ryu S (2001) Heat shock RNA polymerase (E 32) is involved in the transcription of mlc and Crucial for Induction of the Mlc regulon by glucose in Escherichia coli. J Biol Chem 276(28):25871–25875CrossRef Shin D, Lim S, Seok YJ, Ryu S (2001) Heat shock RNA polymerase (E 32) is involved in the transcription of mlc and Crucial for Induction of the Mlc regulon by glucose in Escherichia coli. J Biol Chem 276(28):25871–25875CrossRef
231.
Zurück zum Zitat Hasan CM, Shimizu K (2008) Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb Cell Fact 7:35 Hasan CM, Shimizu K (2008) Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb Cell Fact 7:35
232.
Zurück zum Zitat Kumari S, Beatty CM, Browning DF et al (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182(15):4173–4179CrossRef Kumari S, Beatty CM, Browning DF et al (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182(15):4173–4179CrossRef
233.
Zurück zum Zitat Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJW (2002) Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 43(3):687–701CrossRef Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJW (2002) Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 43(3):687–701CrossRef
234.
Zurück zum Zitat Beatty CM, Browning DF, Busby SJW, Wolfe AJ (2003) Cyclic AMP receptor protein-dependent activation of the Escherichia coliacs P2 promoter by a synergistic class III mechanism. J Bacteriol 185(17):5148–5157CrossRef Beatty CM, Browning DF, Busby SJW, Wolfe AJ (2003) Cyclic AMP receptor protein-dependent activation of the Escherichia coliacs P2 promoter by a synergistic class III mechanism. J Bacteriol 185(17):5148–5157CrossRef
235.
Zurück zum Zitat Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJW, Wolfe AJ (2004) Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51(1):241–254CrossRef Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJW, Wolfe AJ (2004) Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51(1):241–254CrossRef
236.
Zurück zum Zitat Privalle CT, Fridovich I (1987) Induction of superoxide dismutase in Escherichia coli by heat shock. PNAS USA 84(9):2723–2726CrossRef Privalle CT, Fridovich I (1987) Induction of superoxide dismutase in Escherichia coli by heat shock. PNAS USA 84(9):2723–2726CrossRef
237.
Zurück zum Zitat Etchegaray J-P, Inoue M (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181(6):1827–1830 Etchegaray J-P, Inoue M (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181(6):1827–1830
238.
Zurück zum Zitat White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 °C) increases expression of biofilm-, cold shock-, and RpoS-dependent genes in Escherichia coli K-12. Microbiol 154:148–166CrossRef White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 °C) increases expression of biofilm-, cold shock-, and RpoS-dependent genes in Escherichia coli K-12. Microbiol 154:148–166CrossRef
239.
Zurück zum Zitat Kim Y-H, Han KY, Lee K, Lee J (2005) Proteome response of Escherichia coli fed-batch culture to temperature downshift. Appl Microbiol Biotechnol 68:786–793CrossRef Kim Y-H, Han KY, Lee K, Lee J (2005) Proteome response of Escherichia coli fed-batch culture to temperature downshift. Appl Microbiol Biotechnol 68:786–793CrossRef
240.
Zurück zum Zitat Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32CrossRef Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32CrossRef
241.
Zurück zum Zitat Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRef Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRef
242.
Zurück zum Zitat Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRef Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRef
243.
Zurück zum Zitat Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331CrossRef Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331CrossRef
244.
Zurück zum Zitat Takatsuka Y, Chen C, Nikaido H (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. PNAS USA 107:6559–6565CrossRef Takatsuka Y, Chen C, Nikaido H (2010) Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. PNAS USA 107:6559–6565CrossRef
245.
Zurück zum Zitat Ankarloo J, Wikman S, Nicholls IA (2010) Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 11:1403–1412CrossRef Ankarloo J, Wikman S, Nicholls IA (2010) Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 11:1403–1412CrossRef
246.
Zurück zum Zitat Piper P (1995) The heat-shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRef Piper P (1995) The heat-shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRef
247.
Zurück zum Zitat Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945CrossRef Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945CrossRef
248.
Zurück zum Zitat Tomas C, Beamish J, Papoutsakis E (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018CrossRef Tomas C, Beamish J, Papoutsakis E (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018CrossRef
249.
Zurück zum Zitat Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915CrossRef Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915CrossRef
250.
Zurück zum Zitat Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 6:e17678CrossRef Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 6:e17678CrossRef
251.
Zurück zum Zitat Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222 Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
252.
Zurück zum Zitat Holtwick R, Meinhardt F, Keweloh H (1997) cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microb 63:4292–4297 Holtwick R, Meinhardt F, Keweloh H (1997) cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microb 63:4292–4297
253.
Zurück zum Zitat Kiran M, Prakash J, Annapoorni S, Dube S, Kusano T, Okuyama H, Murata N, Shivaji S (2004) Psychrophilic Pseudomonas syringae requires transmonounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401–410CrossRef Kiran M, Prakash J, Annapoorni S, Dube S, Kusano T, Okuyama H, Murata N, Shivaji S (2004) Psychrophilic Pseudomonas syringae requires transmonounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401–410CrossRef
254.
Zurück zum Zitat Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Res 10:217–229 Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Res 10:217–229
255.
Zurück zum Zitat Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Ann Rev Microbiol 65:215–238CrossRef Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Ann Rev Microbiol 65:215–238CrossRef
256.
Zurück zum Zitat Walderhaug MO, Polarek JW, Voelkner P, Daniel JM, Hesse JE, Altendorf K, Epstein W (1992) KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J Bacteriol 174:2152–2159 Walderhaug MO, Polarek JW, Voelkner P, Daniel JM, Hesse JE, Altendorf K, Epstein W (1992) KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J Bacteriol 174:2152–2159
257.
Zurück zum Zitat Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938CrossRef Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938CrossRef
258.
Zurück zum Zitat Hamann K, Zimmann P, Altendorf K (2008) Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J Bacteriol 190:2360–2367CrossRef Hamann K, Zimmann P, Altendorf K (2008) Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J Bacteriol 190:2360–2367CrossRef
259.
Zurück zum Zitat Heermann R, Jung K (2010) The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. Microbiol Lett 304:97–106CrossRef Heermann R, Jung K (2010) The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. Microbiol Lett 304:97–106CrossRef
260.
Zurück zum Zitat Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–272CrossRef Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–272CrossRef
261.
Zurück zum Zitat Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacullus casei. J Appl Microbiol 98:84–95CrossRef Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacullus casei. J Appl Microbiol 98:84–95CrossRef
262.
Zurück zum Zitat Clarke CF, Rowat AC, Gober JW (2014) Is CoQ a membrane stabilizer? Nat Chem Biol 10:242–243CrossRef Clarke CF, Rowat AC, Gober JW (2014) Is CoQ a membrane stabilizer? Nat Chem Biol 10:242–243CrossRef
263.
Zurück zum Zitat Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066CrossRef Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066CrossRef
264.
Zurück zum Zitat Lamins LA, Rhoads DB, Epstein W (1981) Osmotic control of kdp operon expression in Escherichia coli. PNAS USA 78:464–468CrossRef Lamins LA, Rhoads DB, Epstein W (1981) Osmotic control of kdp operon expression in Escherichia coli. PNAS USA 78:464–468CrossRef
265.
Zurück zum Zitat Record MT Jr, Courtenary ES, Cayley DS, Guttman HJ (1998) Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23:143–148CrossRef Record MT Jr, Courtenary ES, Cayley DS, Guttman HJ (1998) Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23:143–148CrossRef
266.
Zurück zum Zitat Grothe S, Krogsrud RL, McClellan DJ, Milner JL, Wood JM (1986) Proline transport and osmotic response in Escherichia coli K-12. J Bacteriol 166:253–259 Grothe S, Krogsrud RL, McClellan DJ, Milner JL, Wood JM (1986) Proline transport and osmotic response in Escherichia coli K-12. J Bacteriol 166:253–259
267.
Zurück zum Zitat Von Weyman N, Nyyssola A, Reinikainen T, Leisola M, Ojamo H (2001) Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Appl Microbiol Biotechnol 55:214–218CrossRef Von Weyman N, Nyyssola A, Reinikainen T, Leisola M, Ojamo H (2001) Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Appl Microbiol Biotechnol 55:214–218CrossRef
268.
Zurück zum Zitat Giaever HM, Styrvoid OB, Kaasen I, Strom AR (1998) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849 Giaever HM, Styrvoid OB, Kaasen I, Strom AR (1998) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849
269.
Zurück zum Zitat Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RCrossRef Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RCrossRef
270.
Zurück zum Zitat Klein W, Ehmann U, Boos W (2991) The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase. Res Microbiol 142:359–371 Klein W, Ehmann U, Boos W (2991) The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase. Res Microbiol 142:359–371
271.
Zurück zum Zitat Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys ACTA Biomembr 1660:171–199CrossRef Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys ACTA Biomembr 1660:171–199CrossRef
272.
Zurück zum Zitat Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663CrossRef Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663CrossRef
273.
Zurück zum Zitat Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273CrossRef Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273CrossRef
274.
Zurück zum Zitat Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147CrossRef Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147CrossRef
275.
Zurück zum Zitat Thomason MK, Fontaine F, De Lay N, Storz1 G (2012) A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol 84(1):17–35 Thomason MK, Fontaine F, De Lay N, Storz1 G (2012) A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol 84(1):17–35
276.
Zurück zum Zitat Jackson DW, Simecka JW, Romeo T (2002) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410CrossRef Jackson DW, Simecka JW, Romeo T (2002) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410CrossRef
277.
Zurück zum Zitat Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346CrossRef Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346CrossRef
278.
Zurück zum Zitat De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191:461–476CrossRef De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191:461–476CrossRef
279.
Zurück zum Zitat Yu Matsuoka, Shimizu K (2015) Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioreses Bioprocess 2:4 Yu Matsuoka, Shimizu K (2015) Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioreses Bioprocess 2:4
280.
Zurück zum Zitat Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic models in industrial biotechnology-improving cell factory performance. Metab Eng 24:38–60CrossRef Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic models in industrial biotechnology-improving cell factory performance. Metab Eng 24:38–60CrossRef
281.
Zurück zum Zitat Chassagnole C, Noisommitt-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73CrossRef Chassagnole C, Noisommitt-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73CrossRef
282.
Zurück zum Zitat Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Fact 9:88CrossRef Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Fact 9:88CrossRef
283.
Zurück zum Zitat Nishio Y, Usuda Y, Matsui K, Kurata H (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 4:160CrossRef Nishio Y, Usuda Y, Matsui K, Kurata H (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 4:160CrossRef
284.
Zurück zum Zitat Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K (2010) Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol 147:17–30CrossRef Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K (2010) Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol 147:17–30CrossRef
285.
Zurück zum Zitat Matsuoka Y, Shimizu K (2013) Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol 168:155−173CrossRef Matsuoka Y, Shimizu K (2013) Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol 168:155−173CrossRef
286.
Zurück zum Zitat Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J (2003) Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 13:2435–2443CrossRef Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J (2003) Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 13:2435–2443CrossRef
287.
Zurück zum Zitat Maheswaran M, Forchhammer K (2003) Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signaling. Microbiology 149:2163–2172CrossRef Maheswaran M, Forchhammer K (2003) Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signaling. Microbiology 149:2163–2172CrossRef
288.
Zurück zum Zitat Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH Jr (2002) Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology 148:123–131CrossRef Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH Jr (2002) Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology 148:123–131CrossRef
289.
Zurück zum Zitat De Lorenzo V, Herrero M, Giovannini F, Neilands JB (1998) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173:537–546CrossRef De Lorenzo V, Herrero M, Giovannini F, Neilands JB (1998) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173:537–546CrossRef
290.
Zurück zum Zitat Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, Escherichia coli. J Bacteriol 187(3):980–990CrossRef Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, Escherichia coli. J Bacteriol 187(3):980–990CrossRef
291.
Zurück zum Zitat Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S (2005) Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187(3):1074–1090CrossRef Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S (2005) Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187(3):1074–1090CrossRef
292.
Zurück zum Zitat Dragosits M, Mozhayskiy V, Quinones-Soto S, Park J, Tagkopoulos I (2013) Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643CrossRef Dragosits M, Mozhayskiy V, Quinones-Soto S, Park J, Tagkopoulos I (2013) Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643CrossRef
293.
Zurück zum Zitat Weber H, Polen T, Heuveling J, Wendisch V, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603CrossRef Weber H, Polen T, Heuveling J, Wendisch V, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603CrossRef
294.
Zurück zum Zitat Jenkins D, Schultz J, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914 Jenkins D, Schultz J, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914
295.
Zurück zum Zitat Jenkins D, Auger E, Matin A (1991) Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173:1992–1996 Jenkins D, Auger E, Matin A (1991) Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173:1992–1996
296.
Zurück zum Zitat Gunasekera T, Csonka L, Paliy O (2008) Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 190:3712–3720CrossRef Gunasekera T, Csonka L, Paliy O (2008) Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 190:3712–3720CrossRef
297.
Zurück zum Zitat White-Ziegler C, Um S, Pérez N, Berns A, Malhowski A, Young S (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166CrossRef White-Ziegler C, Um S, Pérez N, Berns A, Malhowski A, Young S (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166CrossRef
298.
Zurück zum Zitat Rutherford B, Dahl R, Price R, Szmidt H, Benke P, Mukhopadhyay A, Keasling J (2012) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945CrossRef Rutherford B, Dahl R, Price R, Szmidt H, Benke P, Mukhopadhyay A, Keasling J (2012) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945CrossRef
299.
Zurück zum Zitat Rabinowitz J, Silhavy TJ (2012) Metabolite turns master regulator. Nature 500:283–284CrossRef Rabinowitz J, Silhavy TJ (2012) Metabolite turns master regulator. Nature 500:283–284CrossRef
300.
Zurück zum Zitat Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375CrossRef Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375CrossRef
301.
Zurück zum Zitat Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–1102CrossRef Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–1102CrossRef
302.
Zurück zum Zitat Koebman BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909CrossRef Koebman BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909CrossRef
303.
Zurück zum Zitat Luo Y, Zhang T, Wu H (2014) The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 32:905–919CrossRef Luo Y, Zhang T, Wu H (2014) The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 32:905–919CrossRef
304.
Zurück zum Zitat Yao R, Shimizu K (2012) Recent progress in metabolic engineering for the production of biofuels and biochemical from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem 48(9):1409–1417CrossRef Yao R, Shimizu K (2012) Recent progress in metabolic engineering for the production of biofuels and biochemical from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem 48(9):1409–1417CrossRef
305.
Zurück zum Zitat Aidelberg G, Towbin BD, Rothschild D, Dekel E, Bren A, Alon U (2014) Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol 8:133CrossRef Aidelberg G, Towbin BD, Rothschild D, Dekel E, Bren A, Alon U (2014) Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol 8:133CrossRef
306.
Zurück zum Zitat Balsalobre C, Johansson J, Uhlin BE (2006) Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J Bacteriol 188(16):5935–5944CrossRef Balsalobre C, Johansson J, Uhlin BE (2006) Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J Bacteriol 188(16):5935–5944CrossRef
307.
Zurück zum Zitat Zhang H, Chong H, Ching CB, Jiang R (2012) Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng 109(5):1165–1172CrossRef Zhang H, Chong H, Ching CB, Jiang R (2012) Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng 109(5):1165–1172CrossRef
308.
Zurück zum Zitat Basak S, Jiang R (2012) Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLOS One 7(12):e51179CrossRef Basak S, Jiang R (2012) Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLOS One 7(12):e51179CrossRef
309.
Zurück zum Zitat Basak S, Geng H, Jiang R (2013) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75 Basak S, Geng H, Jiang R (2013) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75
310.
Zurück zum Zitat Chong H, Yeow J, Wang I, Song H, Jiang R (2013) Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLOS One 8(10):e77422CrossRef Chong H, Yeow J, Wang I, Song H, Jiang R (2013) Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLOS One 8(10):e77422CrossRef
311.
Zurück zum Zitat Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLOS One 8(2):e57628CrossRef Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLOS One 8(2):e57628CrossRef
312.
Zurück zum Zitat Zhang H, Chong H, Ching CB, Song H, Jiang R (2012) Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 94:1107–1117CrossRef Zhang H, Chong H, Ching CB, Song H, Jiang R (2012) Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 94:1107–1117CrossRef
313.
Zurück zum Zitat Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 3:13CrossRef Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 3:13CrossRef
314.
Zurück zum Zitat Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186(11):3516–3524CrossRef Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186(11):3516–3524CrossRef
315.
Zurück zum Zitat Valgepea K, Adamberg K, Seiman A, Vilu R (2014) Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol BioSyst 9:2344–2358CrossRef Valgepea K, Adamberg K, Seiman A, Vilu R (2014) Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol BioSyst 9:2344–2358CrossRef
316.
Zurück zum Zitat Baste DJV, Nol K, Niedenfuhr Mendum TA, Hawkins ND, Ward JL, Beale MH, Wiechert W, McFadden J (2013) 13C-Flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1–10CrossRef Baste DJV, Nol K, Niedenfuhr Mendum TA, Hawkins ND, Ward JL, Beale MH, Wiechert W, McFadden J (2013) 13C-Flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1–10CrossRef
317.
Zurück zum Zitat Shimizu K (2004) Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol 91:1–49 Shimizu K (2004) Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol 91:1–49
318.
Zurück zum Zitat Shimizu K (2013) Bacterial cellular metabolic systems. Woodhead Publ. Co., OxfordCrossRef Shimizu K (2013) Bacterial cellular metabolic systems. Woodhead Publ. Co., OxfordCrossRef
Metadaten
Titel
Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions
verfasst von
Kazuyuki Shimizu
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2015_320