Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2018

13.01.2018

Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range

verfasst von: Yunpeng Qu, Yuyan Li, Ciqun Xu, Guohua Fan, Peitao Xie, Zhongyang Wang, Yao Liu, Yulin Wu, Runhua Fan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functional metacomposites towards negative dielectric properties via percolating behavior have triggered tremendous fundamental and practical interest. In this paper, titanium nitride was selected to construct percolating metacomposites. Hence, adjusting the frequency region and the value of negative permittivity was effectively realized by uniformly building different ratio x of nickel(II) oxide/titanium nitride composites. Occurrence of percolation phenomenon and change of conductive mechanism were observed when alternating the ratio x. Two different types of negative permittivity (i.e., dipole-type and plasma-type) were observed in the composites. The dipole-type negative permittivity behavior in the composite with low titanium nitride content (i.e., x = 0.5) was ascribed to the resonance-induced electric dipole generated from the isolated titanium nitride particles, which could be explained by Lorentz model. While the plasma-type negative permittivity with titanium nitride content exceeding the percolation threshold could be well explained by the low frequency plasmonic state generated from conductive titanium nitride networks using Drude model. Besides, the electrical properties influenced by percolating phenomenon including ac conductivity, dielectric loss, and impedance were investigated. This work presents a systematic and novel investigation on negative dielectric properties of percolating metacomposites and will greatly facilitate the practical applications of metacomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat C.W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993) C.W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993)
2.
Zurück zum Zitat D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992) D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)
3.
Zurück zum Zitat C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010) C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)
4.
Zurück zum Zitat K. Sun, R. Fan, Y. Yin, J. Guo, X.F. Li, Y. Lei, L. An, C. Cheng, Z. Guo, Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J. Phys. Chem. C 121, 7564–7571 (2017) K. Sun, R. Fan, Y. Yin, J. Guo, X.F. Li, Y. Lei, L. An, C. Cheng, Z. Guo, Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J. Phys. Chem. C 121, 7564–7571 (2017)
5.
Zurück zum Zitat R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal percolation in stable graphite suspensions. Nano Letters 12, 188–192 (2012) R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal percolation in stable graphite suspensions. Nano Letters 12, 188–192 (2012)
6.
Zurück zum Zitat M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013) M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013)
7.
Zurück zum Zitat Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J. Mater. Chem. A 5, 14575–14582 (2017) Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J. Mater. Chem. A 5, 14575–14582 (2017)
8.
Zurück zum Zitat C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017) C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017)
9.
Zurück zum Zitat Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013) Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)
10.
Zurück zum Zitat Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J. Mater. Chem. C 2, 6752–6757 (2014) Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J. Mater. Chem. C 2, 6752–6757 (2014)
12.
Zurück zum Zitat W. Yang, H. Li, J. Lin, G. Chen, Y. Wang, L. Wang, H. Lu, L. Chen, Q. Lei, A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity., J. Mater. Sci. Mater. Electron. 28, 1–9 (2017) W. Yang, H. Li, J. Lin, G. Chen, Y. Wang, L. Wang, H. Lu, L. Chen, Q. Lei, A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity., J. Mater. Sci. Mater. Electron. 28, 1–9 (2017)
13.
Zurück zum Zitat G. Fan, P. Xie, Z. Wang, Y. Qu, Z. Zhang, Y. Liu, R. Fan, Tailorable radio-frequency negative permittivity of titanium nitride sintered with different oxidation pretreatments. Ceram. Int. 43, 16980–16985 (2017) G. Fan, P. Xie, Z. Wang, Y. Qu, Z. Zhang, Y. Liu, R. Fan, Tailorable radio-frequency negative permittivity of titanium nitride sintered with different oxidation pretreatments. Ceram. Int. 43, 16980–16985 (2017)
14.
Zurück zum Zitat P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, R. Fan, Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2017) P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, R. Fan, Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2017)
15.
Zurück zum Zitat K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50–57 (2017) K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50–57 (2017)
16.
Zurück zum Zitat P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 725, 1259–1263 (2017) P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 725, 1259–1263 (2017)
17.
Zurück zum Zitat P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 111, 112903 (2017) P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 111, 112903 (2017)
18.
Zurück zum Zitat Z.C. Shi, R.H. Fan, K.L. Yan, K. Sun, M. Zhang, C.G. Wang, X.F. Liu, X.H. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Func. Mater. 23, 4123–4132 (2013) Z.C. Shi, R.H. Fan, K.L. Yan, K. Sun, M. Zhang, C.G. Wang, X.F. Liu, X.H. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Func. Mater. 23, 4123–4132 (2013)
19.
Zurück zum Zitat Z.C. Shi, R.H. Fan, Z.D. Zhang, H.Y. Gong, J. Ouyang, Y.J. Bai, X.H. Zhang, L.W. Yin, Experimental/theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 137401 (2011) Z.C. Shi, R.H. Fan, Z.D. Zhang, H.Y. Gong, J. Ouyang, Y.J. Bai, X.H. Zhang, L.W. Yin, Experimental/theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 137401 (2011)
20.
Zurück zum Zitat Z. Shi, S. Chen, K. Sun, X. Wang, R.-H. Fan, X.-A. Wang, Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl. Phys. Lett. 104, 52–3398 (2014) Z. Shi, S. Chen, K. Sun, X. Wang, R.-H. Fan, X.-A. Wang, Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl. Phys. Lett. 104, 52–3398 (2014)
21.
Zurück zum Zitat X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun, S.B. Pan, M.X. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014) X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun, S.B. Pan, M.X. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)
22.
Zurück zum Zitat Z. Shi, F. Mao, J. Wang, R. Fan, X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity. RSC Adv. 5, 107307–107312 (2015) Z. Shi, F. Mao, J. Wang, R. Fan, X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity. RSC Adv. 5, 107307–107312 (2015)
24.
Zurück zum Zitat M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017) M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017)
25.
Zurück zum Zitat M. Han, X. Yin, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Flexible and thermostable graphene/SiC nanowires foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017) M. Han, X. Yin, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Flexible and thermostable graphene/SiC nanowires foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017)
26.
Zurück zum Zitat M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016) M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016)
27.
Zurück zum Zitat M. Han, X. Yin, S. Ren, W. Duan, L. Zhang, L. Cheng, Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 6, 6467–6474 (2016) M. Han, X. Yin, S. Ren, W. Duan, L. Zhang, L. Cheng, Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 6, 6467–6474 (2016)
28.
Zurück zum Zitat W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014) W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)
29.
Zurück zum Zitat X. Hou, P. Qiu, T. Yang, K.-C. Chou, Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. J. Alloys Compd. 615, 838–842 (2014) X. Hou, P. Qiu, T. Yang, K.-C. Chou, Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. J. Alloys Compd. 615, 838–842 (2014)
30.
Zurück zum Zitat M. Cortie, J. Giddings, A. Dowd, Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21, 115201 (2010) M. Cortie, J. Giddings, A. Dowd, Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21, 115201 (2010)
31.
Zurück zum Zitat X. Wu, Q. Wang, W. Zhang, Y. Wang, W. Chen, Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim. Acta 211, 1066–1075 (2016) X. Wu, Q. Wang, W. Zhang, Y. Wang, W. Chen, Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim. Acta 211, 1066–1075 (2016)
32.
Zurück zum Zitat Z.B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, Y.P. Wu, A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Mater. Res. Bull. 74, 241–247 (2016) Z.B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, Y.P. Wu, A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Mater. Res. Bull. 74, 241–247 (2016)
33.
Zurück zum Zitat H. Haruta, The impedance measurement handbook: a guide to measurement technology and techniques. Agilent Technologies (2000) H. Haruta, The impedance measurement handbook: a guide to measurement technology and techniques. Agilent Technologies (2000)
34.
Zurück zum Zitat C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun, M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96, 678–684 (2016) C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun, M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96, 678–684 (2016)
35.
Zurück zum Zitat K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J. Mater. Chem. C 2, 1028–1033 (2014) K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J. Mater. Chem. C 2, 1028–1033 (2014)
36.
Zurück zum Zitat H. Wu, R. Yin, L. Qian, Z. Zhang, Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Design 117, 18–23 (2017) H. Wu, R. Yin, L. Qian, Z. Zhang, Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Design 117, 18–23 (2017)
37.
Zurück zum Zitat F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2010) F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2010)
38.
Zurück zum Zitat J. Wang, Z.C. Shi, F. Mao, S. Chen, X. Wang, Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl. Mater. Interfaces 9, 1793–1800 (2016) J. Wang, Z.C. Shi, F. Mao, S. Chen, X. Wang, Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl. Mater. Interfaces 9, 1793–1800 (2016)
39.
Zurück zum Zitat H. Gu, H. Zhang, C. Ma, S. Lyu, F. Yao, C. Liang, X. Yang, J. Guo, Z. Guo, J. Gu, Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J. Phys. Chem. C 121, 13265–13273 (2017) H. Gu, H. Zhang, C. Ma, S. Lyu, F. Yao, C. Liang, X. Yang, J. Guo, Z. Guo, J. Gu, Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J. Phys. Chem. C 121, 13265–13273 (2017)
40.
Zurück zum Zitat X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H. Gu, J. Yu, J. Liu, D. Ding, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 7, 6125–6138 (2015) X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H. Gu, J. Yu, J. Liu, D. Ding, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 7, 6125–6138 (2015)
41.
Zurück zum Zitat Y. Feng, W. Li, Y. Hou, Y. Yu, W. Cao, T. Zhang, W. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2015) Y. Feng, W. Li, Y. Hou, Y. Yu, W. Cao, T. Zhang, W. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2015)
42.
Zurück zum Zitat C. Wu, X. Huang, X. Wu, L. Xie, K. Yang, P. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013) C. Wu, X. Huang, X. Wu, L. Xie, K. Yang, P. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)
43.
Zurück zum Zitat Z. Wang, K. Sun, P. Xie, Y. Liu, R. Fan, Generation mechanism of negative permittivity and Kramers–Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. J. Phys.: Condens. Matter 29, 365703 (2017) Z. Wang, K. Sun, P. Xie, Y. Liu, R. Fan, Generation mechanism of negative permittivity and Kramers–Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. J. Phys.: Condens. Matter 29, 365703 (2017)
44.
Zurück zum Zitat J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47, 1311–1320 (2009) J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47, 1311–1320 (2009)
45.
Zurück zum Zitat G. Liu, P. Ci, S. Dong, Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104, 032908 (2014) G. Liu, P. Ci, S. Dong, Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104, 032908 (2014)
46.
Zurück zum Zitat M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014) M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014)
Metadaten
Titel
Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range
verfasst von
Yunpeng Qu
Yuyan Li
Ciqun Xu
Guohua Fan
Peitao Xie
Zhongyang Wang
Yao Liu
Yulin Wu
Runhua Fan
Publikationsdatum
13.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8557-7

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science: Materials in Electronics 7/2018 Zur Ausgabe

Neuer Inhalt