Skip to main content
Erschienen in: Progress in Additive Manufacturing 2/2021

22.11.2020 | Full Research Article

Metal additive manufacturing of carbon steel with direct laser deposition: computer simulation

verfasst von: Hamed Hosseinzadeh

Erschienen in: Progress in Additive Manufacturing | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal 3D printing technology is commercially available, but the quality of the printed product is still a challenging issue that needs to be improved. More research is needed to address the essential technical details of metal 3D printing. Important technical details are the alloy microstructure, imperfections like pores, distortion, surface roughness, and residual stress, which affect the mechanical properties of the printed sample like fatigue performance. This research has computationally studied metal 3D printing for carbon steel to address the parameters that affect the quality of the final product printed by direct laser deposition. Multiscale multiphysics computational algorithms were coding in Microsoft Visual Basics 2015 to simulate the thermal stress, deformation, and austenite grain topology. Energy and force equilibrium equations were numerically solved to simulate the thermal and mechanical history versus print’s adjustable parameters like scan speed, laser power, and rate of metal powders injection through the nozzle. The austenite grain size of steel is an important parameter that is directly related to the local thermal history. A stochastic computational code was developed to simulate grain morphology based on calculated thermal history. The simulation showed the dependence of von Mises stress and thermal history on the rate of metal powders injection, laser power, and scan speed. The simulation showed a rise in von Mises stress by increasing the scan speed and laser power. Print speed and laser power also change the local maximum temperature and the local alloy microstructure. The local austenite grain size increases by reducing scan speed in the heat-affected zone. The simulation showed that the microstructure of the printed part is not uniform, and different layers are distinctive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Debroy T, Wei HL, Zuback JS et al (2018) Progress in materials science additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224CrossRef Debroy T, Wei HL, Zuback JS et al (2018) Progress in materials science additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224CrossRef
20.
Zurück zum Zitat Cheng L, Yang Q, Zhang P et al (2016) Finite element modeling and validation of thermomechanical behavior of Ti–6Al–4V in directed energy deposition additive manufacturing finite element modeling and validation of thermomechanical behavior of Ti–6Al–4V in directed energy deposition additive. Addit Manuf 12:169–177. https://doi.org/10.1016/j.addma.2016.06.012CrossRef Cheng L, Yang Q, Zhang P et al (2016) Finite element modeling and validation of thermomechanical behavior of Ti–6Al–4V in directed energy deposition additive manufacturing finite element modeling and validation of thermomechanical behavior of Ti–6Al–4V in directed energy deposition additive. Addit Manuf 12:169–177. https://​doi.​org/​10.​1016/​j.​addma.​2016.​06.​012CrossRef
45.
Zurück zum Zitat Theses M, Liu H (2014) Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process. Scholars’ Mine Theses M, Liu H (2014) Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process. Scholars’ Mine
46.
Zurück zum Zitat Grajcar A, Opiela M (2008) Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP-steels. J Achiev Mater Manuf Eng 29:71–78 Grajcar A, Opiela M (2008) Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP-steels. J Achiev Mater Manuf Eng 29:71–78
Metadaten
Titel
Metal additive manufacturing of carbon steel with direct laser deposition: computer simulation
verfasst von
Hamed Hosseinzadeh
Publikationsdatum
22.11.2020
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 2/2021
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-020-00160-4

Weitere Artikel der Ausgabe 2/2021

Progress in Additive Manufacturing 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.