Skip to main content
Erschienen in: Journal of Nanoparticle Research 12/2020

01.12.2020 | Review

Metal oxides nanostructure-based electrode materials for supercapacitor application

verfasst von: Mahendra Singh Yadav

Erschienen in: Journal of Nanoparticle Research | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, electrochemical supercapacitor has drawn more attention because of its superior electrochemical properties including larger life cycle, higher specific capacitance, and larger specific power. The supercapacitor is also able to fill the energy and power gap between battery and traditional capacitor. The supercapacitor has been considered suitable as an energy storage device for next-generation higher power applications. The ultracapacitor design using nanostructure-based electrode materials has provided better electrochemical properties. This review article gives a brief overview about the latest research trends on metal oxides nanostructure-based electrode materials for ultracapacitors and, in addition, highlights the nanomaterial effect on the electrode properties of ultracapacitors, which gives guidance in developing high-performance next-generation ultracapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17:2865–2869CrossRef Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17:2865–2869CrossRef
Zurück zum Zitat An KH, Jeon KK (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149(8):A1058–A1062CrossRef An KH, Jeon KK (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149(8):A1058–A1062CrossRef
Zurück zum Zitat An KH, Kim WS (2001a) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13(7):497–500CrossRef An KH, Kim WS (2001a) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13(7):497–500CrossRef
Zurück zum Zitat An KH, Kim WS (2001b) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392CrossRef An KH, Kim WS (2001b) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392CrossRef
Zurück zum Zitat Andrea B, Romain D, Pierre-Louis T, Patrice S, Dominique P, Marina M, Stefano P (2007) J Power Sources 165:922–927CrossRef Andrea B, Romain D, Pierre-Louis T, Patrice S, Dominique P, Marina M, Stefano P (2007) J Power Sources 165:922–927CrossRef
Zurück zum Zitat Arbizzani C, Mastragostino M (2001) New trends in electrochemical supercapacitors. J Power Sources 100(1–2):164–170CrossRef Arbizzani C, Mastragostino M (2001) New trends in electrochemical supercapacitors. J Power Sources 100(1–2):164–170CrossRef
Zurück zum Zitat Balakrishnan A, Subramanian KRV (2014) Nanostructured ceramic oxides for supercapacitor applications. CRC Press, Boca RatonCrossRef Balakrishnan A, Subramanian KRV (2014) Nanostructured ceramic oxides for supercapacitor applications. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
Zurück zum Zitat Bi RR, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) J Phys Chem C 114:2448–2451CrossRef Bi RR, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) J Phys Chem C 114:2448–2451CrossRef
Zurück zum Zitat Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50CrossRef Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50CrossRef
Zurück zum Zitat Chang J, Mane RS, Ham D, Lee W, Cho BW, Lee JK, Han S-H (2007) Electrochemical capacitive properties of cadmium oxide films. Electrochim Acta 53:695–699CrossRef Chang J, Mane RS, Ham D, Lee W, Cho BW, Lee JK, Han S-H (2007) Electrochemical capacitive properties of cadmium oxide films. Electrochim Acta 53:695–699CrossRef
Zurück zum Zitat Chen L, Lai Q, Hao Y, Zhao Y, Ji X (2009) Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloys Compd 467:465–471CrossRef Chen L, Lai Q, Hao Y, Zhao Y, Ji X (2009) Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloys Compd 467:465–471CrossRef
Zurück zum Zitat Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide−MnO2Nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRef Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide−MnO2Nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRef
Zurück zum Zitat Chen YM, Cai JH, Huang YS, Lee KY, Tsai DS (2011) Nanotechnology 22:115706 1-8CrossRef Chen YM, Cai JH, Huang YS, Lee KY, Tsai DS (2011) Nanotechnology 22:115706 1-8CrossRef
Zurück zum Zitat Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:60–64CrossRef Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:60–64CrossRef
Zurück zum Zitat Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112(1):236–246CrossRef Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112(1):236–246CrossRef
Zurück zum Zitat Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New YorkCrossRef Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New YorkCrossRef
Zurück zum Zitat Conway BE, Birss V (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRef Conway BE, Birss V (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRef
Zurück zum Zitat Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys 82:599–606CrossRef Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys 82:599–606CrossRef
Zurück zum Zitat Dandekar MS, Arabale G, Vijayamohanan K (2005) Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors. J Power Sources 141:198–203CrossRef Dandekar MS, Arabale G, Vijayamohanan K (2005) Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors. J Power Sources 141:198–203CrossRef
Zurück zum Zitat Du CS, Yeh J (2005) High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4):350–353CrossRef Du CS, Yeh J (2005) High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4):350–353CrossRef
Zurück zum Zitat Du X, Wang C, Chen M, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646CrossRef Du X, Wang C, Chen M, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646CrossRef
Zurück zum Zitat Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloys Compd 492:26–30CrossRef Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloys Compd 492:26–30CrossRef
Zurück zum Zitat Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965CrossRef Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965CrossRef
Zurück zum Zitat Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRef Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRef
Zurück zum Zitat Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRef Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRef
Zurück zum Zitat Frackowiak E, Metenier K (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423CrossRef Frackowiak E, Metenier K (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423CrossRef
Zurück zum Zitat Gao Y, Chen S, Cao D, Wang G, Yin J (2010a) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760CrossRef Gao Y, Chen S, Cao D, Wang G, Yin J (2010a) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760CrossRef
Zurück zum Zitat Gao F, Zhang L, Huang S (2010b) Fabrication horizontal aligned MoO2/single-walled carbon nanotube nanowires for electrochemical supercapacitor. Mater Lett 64:537–540CrossRef Gao F, Zhang L, Huang S (2010b) Fabrication horizontal aligned MoO2/single-walled carbon nanotube nanowires for electrochemical supercapacitor. Mater Lett 64:537–540CrossRef
Zurück zum Zitat Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE, Am J (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. Chem Soc 127:16006–16007CrossRef Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE, Am J (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. Chem Soc 127:16006–16007CrossRef
Zurück zum Zitat Grupioni AAF, Prashiro E, Lassali TAF (2002) Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode. Electrochim Acta 48:407–418CrossRef Grupioni AAF, Prashiro E, Lassali TAF (2002) Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode. Electrochim Acta 48:407–418CrossRef
Zurück zum Zitat Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161:1479–1485CrossRef Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161:1479–1485CrossRef
Zurück zum Zitat Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510CrossRef Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510CrossRef
Zurück zum Zitat Gunjkar JL (2008) Ph.D. Thesis Shivaji University, Kolhapur Gunjkar JL (2008) Ph.D. Thesis Shivaji University, Kolhapur
Zurück zum Zitat Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem Commun 9:2315–2319CrossRef Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem Commun 9:2315–2319CrossRef
Zurück zum Zitat Hall PJ, Mirzaeian M, Isobel Fletcher S, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy Environ Sci 3:1238–1251CrossRef Hall PJ, Mirzaeian M, Isobel Fletcher S, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy Environ Sci 3:1238–1251CrossRef
Zurück zum Zitat Hu CC, Wang CC (2002) Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors. Electrochem Commun 4:554–559CrossRef Hu CC, Wang CC (2002) Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors. Electrochem Commun 4:554–559CrossRef
Zurück zum Zitat Hu CC, Wang CC, Chang KH (2007) A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium–tin oxide composites. Electrochim Acta 52:2691–2700CrossRef Hu CC, Wang CC, Chang KH (2007) A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium–tin oxide composites. Electrochim Acta 52:2691–2700CrossRef
Zurück zum Zitat Jacob GM (2009) Nanocomposite electrodes for electrochemical supercapacitors. PhD thesis, McMaster University Jacob GM (2009) Nanocomposite electrodes for electrochemical supercapacitors. PhD thesis, McMaster University
Zurück zum Zitat Jang JH, Kato A, Machida K, Naoi K (2006a) J Electrochem Soc 153:A-321CrossRef Jang JH, Kato A, Machida K, Naoi K (2006a) J Electrochem Soc 153:A-321CrossRef
Zurück zum Zitat Jang JH, Machida K, Kim Y, Naoi K (2006b) Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim Acta 52:1733–1741CrossRef Jang JH, Machida K, Kim Y, Naoi K (2006b) Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim Acta 52:1733–1741CrossRef
Zurück zum Zitat Kandalkar SG, Gunjakar JL, Lokhande CD (2008) Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci 254:5540–5544CrossRef Kandalkar SG, Gunjakar JL, Lokhande CD (2008) Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci 254:5540–5544CrossRef
Zurück zum Zitat Kearns JT, Roberts ME (2012) Enhanced performance of triarylamine redox electrodes through directed electrochemical polymerization. J Mater Chem 22:2392–2394CrossRef Kearns JT, Roberts ME (2012) Enhanced performance of triarylamine redox electrodes through directed electrochemical polymerization. J Mater Chem 22:2392–2394CrossRef
Zurück zum Zitat Kim IH, Kim KB (2001a) Ruthenium oxide thin film electrodes for supercapacitors. Electrochem Solid-State Lett 4(5):A62–A64CrossRef Kim IH, Kim KB (2001a) Ruthenium oxide thin film electrodes for supercapacitors. Electrochem Solid-State Lett 4(5):A62–A64CrossRef
Zurück zum Zitat Kim H, Popav BN (2002) Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J Power Sources 104:52–61CrossRef Kim H, Popav BN (2002) Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J Power Sources 104:52–61CrossRef
Zurück zum Zitat Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) ACS Appl Mater Interfaces 5:1596–1603CrossRef Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) ACS Appl Mater Interfaces 5:1596–1603CrossRef
Zurück zum Zitat Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498CrossRef Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498CrossRef
Zurück zum Zitat Kulkarni SB, Jamadade VS, Dhawale DS, Lokhande CD (2009) Synthesis and characterization of β-Ni(OH)2 up grown nanoflakes by SILAR method. Appl Surf Sci 255:8390–8394CrossRef Kulkarni SB, Jamadade VS, Dhawale DS, Lokhande CD (2009) Synthesis and characterization of β-Ni(OH)2 up grown nanoflakes by SILAR method. Appl Surf Sci 255:8390–8394CrossRef
Zurück zum Zitat Laforgue A, Simon P (2003) Activated carbon/conducting polymer hybrid supercapacitors. J Electrochem Soc 150(5):A645–A651CrossRef Laforgue A, Simon P (2003) Activated carbon/conducting polymer hybrid supercapacitors. J Electrochem Soc 150(5):A645–A651CrossRef
Zurück zum Zitat Lee HY, Goodenough JB (1999) Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem 148:81–84CrossRef Lee HY, Goodenough JB (1999) Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem 148:81–84CrossRef
Zurück zum Zitat Liang K, Tang XZ, Hu WC (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22:11062–11067CrossRef Liang K, Tang XZ, Hu WC (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22:11062–11067CrossRef
Zurück zum Zitat Lin C, Ritter JA, Popov BN (1998) Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. J Electrochem Soc 145:4097–4103CrossRef Lin C, Ritter JA, Popov BN (1998) Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. J Electrochem Soc 145:4097–4103CrossRef
Zurück zum Zitat Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York
Zurück zum Zitat Liu XM, Zhang XG (2004) NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim Acta 49:229–232CrossRef Liu XM, Zhang XG (2004) NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim Acta 49:229–232CrossRef
Zurück zum Zitat Liu D, Wang X, Wang X, Tian W, Liu J, Zhi C, He D, Bando Y, Golberg D (2013) J Mater Chem A 1:1952–1955CrossRef Liu D, Wang X, Wang X, Tian W, Liu J, Zhi C, He D, Bando Y, Golberg D (2013) J Mater Chem A 1:1952–1955CrossRef
Zurück zum Zitat Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) ACS Appl Mater Interfaces 6:2174–2184CrossRef Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) ACS Appl Mater Interfaces 6:2174–2184CrossRef
Zurück zum Zitat Lokhande CD, Gujar TP, Shinde VR, Mane RS, Han SH (2007) Electrochemical supercapacitor application of pervoskite thin films. Electrochem Commun 9:1805–1809CrossRef Lokhande CD, Gujar TP, Shinde VR, Mane RS, Han SH (2007) Electrochemical supercapacitor application of pervoskite thin films. Electrochem Commun 9:1805–1809CrossRef
Zurück zum Zitat Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, Xiao JQ (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed 50:6847–6850CrossRef Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, Xiao JQ (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed 50:6847–6850CrossRef
Zurück zum Zitat Luo JM, Gao B, Zhang XG (2008) High capacitive performance of nanostructured Mn–Ni–Co oxide composites for supercapacitor. Mater Res Bull 43:1119–1125CrossRef Luo JM, Gao B, Zhang XG (2008) High capacitive performance of nanostructured Mn–Ni–Co oxide composites for supercapacitor. Mater Res Bull 43:1119–1125CrossRef
Zurück zum Zitat Maldonado-Hodar FJ, Castilla CM, Utrilla JR, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef Maldonado-Hodar FJ, Castilla CM, Utrilla JR, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef
Zurück zum Zitat Mane RS, Chang J, Ham D, Pawar BN, Ganesh T, Cho BW, Lee JK, Han SH (2009) Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes. Curr Appl Phys 9:87–91CrossRef Mane RS, Chang J, Ham D, Pawar BN, Ganesh T, Cho BW, Lee JK, Han SH (2009) Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes. Curr Appl Phys 9:87–91CrossRef
Zurück zum Zitat Mastragostino M, Arbizzani C (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148(3–4):493–498CrossRef Mastragostino M, Arbizzani C (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148(3–4):493–498CrossRef
Zurück zum Zitat Min CK, Wu TB, Yang WT, Li CL (2009) Nanocrystalline ruthenium oxide of fine mesoporosity prepared by templating for electrochemical capacitor applications. Mater Chem Phys 117:70–73CrossRef Min CK, Wu TB, Yang WT, Li CL (2009) Nanocrystalline ruthenium oxide of fine mesoporosity prepared by templating for electrochemical capacitor applications. Mater Chem Phys 117:70–73CrossRef
Zurück zum Zitat Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431CrossRef Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431CrossRef
Zurück zum Zitat Nagrajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405CrossRef Nagrajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405CrossRef
Zurück zum Zitat Nam KW, Kim KB (2002) A Study of the Preparation of NiO[sub x] Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism. J Electrochem Soc 149:A346CrossRef Nam KW, Kim KB (2002) A Study of the Preparation of NiO[sub x] Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism. J Electrochem Soc 149:A346CrossRef
Zurück zum Zitat Nam KW, Yoon WS, Kim KB (2002) X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors. Electrochim Acta 47:3201–3209CrossRef Nam KW, Yoon WS, Kim KB (2002) X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors. Electrochim Acta 47:3201–3209CrossRef
Zurück zum Zitat Niu CM, Sichel EK (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482CrossRef Niu CM, Sichel EK (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482CrossRef
Zurück zum Zitat Park JH, Park OO (2002) Morphology and electrochemical behaviour of ruthenium oxide thin film deposited on carbon paper. J Power Sources 109:121–126CrossRef Park JH, Park OO (2002) Morphology and electrochemical behaviour of ruthenium oxide thin film deposited on carbon paper. J Power Sources 109:121–126CrossRef
Zurück zum Zitat Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152CrossRef Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152CrossRef
Zurück zum Zitat Park SH, Kim JY, Kim KB (2010) Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation. Fuel Cells 10:865–872CrossRef Park SH, Kim JY, Kim KB (2010) Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation. Fuel Cells 10:865–872CrossRef
Zurück zum Zitat Patake VD, Lokhande CD, Joo OS (2009a) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci 255:4192–4196CrossRef Patake VD, Lokhande CD, Joo OS (2009a) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci 255:4192–4196CrossRef
Zurück zum Zitat Patake VD, Lokhande CD, Joo OS (2009b) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci 255:4192–4196CrossRef Patake VD, Lokhande CD, Joo OS (2009b) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci 255:4192–4196CrossRef
Zurück zum Zitat Patake VD, Joshi SS, Lokhande CD, Joo OS (2009c) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6–9CrossRef Patake VD, Joshi SS, Lokhande CD, Joo OS (2009c) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6–9CrossRef
Zurück zum Zitat Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607CrossRef Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607CrossRef
Zurück zum Zitat Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS (2009) Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources 188:338–342CrossRef Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS (2009) Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources 188:338–342CrossRef
Zurück zum Zitat Pico F, Rojo JM (2004) Single-walled carbon nanotubes as electrodes in supercapacitors. J Electrochem Soc 151(6):A831–A837CrossRef Pico F, Rojo JM (2004) Single-walled carbon nanotubes as electrodes in supercapacitors. J Electrochem Soc 151(6):A831–A837CrossRef
Zurück zum Zitat Prasad KR, Miura N (2004) Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochem Commun 6:849–852CrossRef Prasad KR, Miura N (2004) Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochem Commun 6:849–852CrossRef
Zurück zum Zitat Rajeshwari J, Kishore PS, Vishwanathan B, Varadarajan TK (2009) One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem Commun 11:572–575CrossRef Rajeshwari J, Kishore PS, Vishwanathan B, Varadarajan TK (2009) One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem Commun 11:572–575CrossRef
Zurück zum Zitat Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK (2009) One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem Commun 11:572–575CrossRef Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK (2009) One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem Commun 11:572–575CrossRef
Zurück zum Zitat Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Adv Mater 24:5045–5064CrossRef Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Adv Mater 24:5045–5064CrossRef
Zurück zum Zitat Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Nano Rev 2:5883 1–62CrossRef Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Nano Rev 2:5883 1–62CrossRef
Zurück zum Zitat Shao G, Yao Y, Zhang S, He P (2009) Supercapacitor characteristic of La-doped Ni(OH)2 prepared by electrode-position. Rare Metals 28:132–136CrossRef Shao G, Yao Y, Zhang S, He P (2009) Supercapacitor characteristic of La-doped Ni(OH)2 prepared by electrode-position. Rare Metals 28:132–136CrossRef
Zurück zum Zitat Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492CrossRef Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492CrossRef
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef
Zurück zum Zitat Soudan P, Lucas P, Ho HA, Jobin D, Breau L, Belanger D (2001) Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. J Mater Chem 11:773–782CrossRef Soudan P, Lucas P, Ho HA, Jobin D, Breau L, Belanger D (2001) Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. J Mater Chem 11:773–782CrossRef
Zurück zum Zitat Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRef Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRef
Zurück zum Zitat Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Electrochem Solid-State Lett 4:A-145CrossRef Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Electrochem Solid-State Lett 4:A-145CrossRef
Zurück zum Zitat Tao F, Shen Y, Liang Y, Li H (2007) Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. J Solid State Electrochem 11:853–858CrossRef Tao F, Shen Y, Liang Y, Li H (2007) Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. J Solid State Electrochem 11:853–858CrossRef
Zurück zum Zitat Trasatti S, Kurzweil P (1994) Platin Met Rev 38(2):46–56 Trasatti S, Kurzweil P (1994) Platin Met Rev 38(2):46–56
Zurück zum Zitat US patent 2800616 (n.d.) “Low voltage electrolytic capacitor”, granted 1957-07-23 US patent 2800616 (n.d.) “Low voltage electrolytic capacitor”, granted 1957-07-23
Zurück zum Zitat US patent 3288641 (n.d.)“Electrical energy storage apparatus”, granted 1966-11-29 US patent 3288641 (n.d.)“Electrical energy storage apparatus”, granted 1966-11-29
Zurück zum Zitat Viswanathan P, Chirasatitsin S, Ngamkham K, Engler AJ, Battalia G, Am J (2012) Cell instructive microporous scaffolds through interface engineering. Chem Soc 134:20103–20109CrossRef Viswanathan P, Chirasatitsin S, Ngamkham K, Engler AJ, Battalia G, Am J (2012) Cell instructive microporous scaffolds through interface engineering. Chem Soc 134:20103–20109CrossRef
Zurück zum Zitat Wang YG, Xia YY (2006) Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta 51:3223–3227CrossRef Wang YG, Xia YY (2006) Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta 51:3223–3227CrossRef
Zurück zum Zitat Wang J, Zhang SQ (2001) Morphological effects on the electrical and electrochemical properties of carbon aerogels. J Electrochem Soc 148(6):D75–D77CrossRef Wang J, Zhang SQ (2001) Morphological effects on the electrical and electrochemical properties of carbon aerogels. J Electrochem Soc 148(6):D75–D77CrossRef
Zurück zum Zitat Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005a) Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources 140:211–215CrossRef Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005a) Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources 140:211–215CrossRef
Zurück zum Zitat Wang YG, Wang ZD, Xia YY (2005b) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50:5641–5646CrossRef Wang YG, Wang ZD, Xia YY (2005b) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50:5641–5646CrossRef
Zurück zum Zitat Wang XF, You Z, Ruan DB (2006) A hybrid metal oxide supercapacitor in aqueous KOH electrolyte†. J Chinese Chem 24:1126–1132CrossRef Wang XF, You Z, Ruan DB (2006) A hybrid metal oxide supercapacitor in aqueous KOH electrolyte†. J Chinese Chem 24:1126–1132CrossRef
Zurück zum Zitat Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) ACS Appl Mater Interfaces 6:6739–6747CrossRef Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) ACS Appl Mater Interfaces 6:6739–6747CrossRef
Zurück zum Zitat Wu NL (2002) Nanocrystalline oxide supercapacitors. Mater Chem Phys 75:6–11CrossRef Wu NL (2002) Nanocrystalline oxide supercapacitors. Mater Chem Phys 75:6–11CrossRef
Zurück zum Zitat Wu M, Gao J, Zhang S, Chen A (2006) Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors. J Porous Mater 13:407–412CrossRef Wu M, Gao J, Zhang S, Chen A (2006) Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors. J Porous Mater 13:407–412CrossRef
Zurück zum Zitat Xia W, Qiu B, Xia D, Zou R (1935) Sci Rep 2013(3):1–7 Xia W, Qiu B, Xia D, Zou R (1935) Sci Rep 2013(3):1–7
Zurück zum Zitat Xie X, Zhang C, Wu M-B, Tao Y, Lv W, Yang Q-H (2013) Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chem Commun 49:11092CrossRef Xie X, Zhang C, Wu M-B, Tao Y, Lv W, Yang Q-H (2013) Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chem Commun 49:11092CrossRef
Zurück zum Zitat Yadav MS (2020a) Synthesis and characterization of Mn2O3−Mn3O4 nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Energy Storag 27:101079CrossRef Yadav MS (2020a) Synthesis and characterization of Mn2O3−Mn3O4 nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Energy Storag 27:101079CrossRef
Zurück zum Zitat Yadav MS, Tripathi SK (2017) Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application. Ionics 23:2919–2930CrossRef Yadav MS, Tripathi SK (2017) Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application. Ionics 23:2919–2930CrossRef
Zurück zum Zitat Yadav MS, Singh N, Bobade SM (2018a) Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24:3611–3630CrossRef Yadav MS, Singh N, Bobade SM (2018a) Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24:3611–3630CrossRef
Zurück zum Zitat Yadav MS, Singh N, Kumar A (2018b) J Mater Sci Mater Electron 29:6853CrossRef Yadav MS, Singh N, Kumar A (2018b) J Mater Sci Mater Electron 29:6853CrossRef
Zurück zum Zitat Yadav MS, Sinha AK, Singh MN (2018c) Electrochemical behaviour of ZnO–AC based nanocomposite electrode for supercapacitor. Mater Res Express 5:085503CrossRef Yadav MS, Sinha AK, Singh MN (2018c) Electrochemical behaviour of ZnO–AC based nanocomposite electrode for supercapacitor. Mater Res Express 5:085503CrossRef
Zurück zum Zitat Yadav MS, Singh N, Bobade SM (2020b) Matpr 28(1):366–374 Yadav MS, Singh N, Bobade SM (2020b) Matpr 28(1):366–374
Zurück zum Zitat Yan DL, Guo ZL, Zhu GS, Yu ZZ, Xu HR, Yu AB (2012) J Power Sources 199:409–412CrossRef Yan DL, Guo ZL, Zhu GS, Yu ZZ, Xu HR, Yu AB (2012) J Power Sources 199:409–412CrossRef
Zurück zum Zitat Yoon YS, Cho WI, Lim JH, Choi DJ (2001) Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources 101:126–129CrossRef Yoon YS, Cho WI, Lim JH, Choi DJ (2001) Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources 101:126–129CrossRef
Zurück zum Zitat Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRef Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRef
Zurück zum Zitat Zhang J, Zhang L, Sun X, Liu H, Sun A, Liu R-S, Zhang J (2012) Electrochemical technologies for energy storage and conversion, 1st edn. Wiley Zhang J, Zhang L, Sun X, Liu H, Sun A, Liu R-S, Zhang J (2012) Electrochemical technologies for energy storage and conversion, 1st edn. Wiley
Zurück zum Zitat Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7):6156–6161CrossRef Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7):6156–6161CrossRef
Zurück zum Zitat Zhao Y, Zhang G, Li HL (2006) Electrochemical characterization on layered lithium ruthenate for electrochemical supercapacitors. Solid State Ionics 177:1335–1339CrossRef Zhao Y, Zhang G, Li HL (2006) Electrochemical characterization on layered lithium ruthenate for electrochemical supercapacitors. Solid State Ionics 177:1335–1339CrossRef
Zurück zum Zitat Zhao S, Dao S, Zhou W, Li H (2007a) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRef Zhao S, Dao S, Zhou W, Li H (2007a) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRef
Zurück zum Zitat Zhao G, Xu C, Li H (2007b) Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. J Power Sources 163:1132–1136CrossRef Zhao G, Xu C, Li H (2007b) Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. J Power Sources 163:1132–1136CrossRef
Zurück zum Zitat Zheng JP (1999) Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem Solid-State Lett 2:359CrossRef Zheng JP (1999) Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem Solid-State Lett 2:359CrossRef
Zurück zum Zitat Zheng JP, Cygan PJ (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRef Zheng JP, Cygan PJ (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRef
Zurück zum Zitat Zheng JP, Jow TR (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142(1):L6–L8CrossRef Zheng JP, Jow TR (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142(1):L6–L8CrossRef
Zurück zum Zitat Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2:2538–2549CrossRef Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2:2538–2549CrossRef
Metadaten
Titel
Metal oxides nanostructure-based electrode materials for supercapacitor application
verfasst von
Mahendra Singh Yadav
Publikationsdatum
01.12.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 12/2020
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-05103-2

Weitere Artikel der Ausgabe 12/2020

Journal of Nanoparticle Research 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.