Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Methane Production from Napier Grass by Co-digestion with Cow Dung

verfasst von : Suriya Sawanon, Piyanee Sangsri, Suchat Leungprasert, Nusara Sinbuathong

Erschienen in: Energy Solutions to Combat Global Warming

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Methane could substitute for fossil-fuel-derived energy and reduce environmental impacts including global warming. Grass can be transformed into energy by anaerobic digestion. The objective of this study was to investigate the co-digestion of napier grass with cow dung. Digestion of napier grass at a cutting interval of 60 days was investigated in single-stage, semi-continuous anaerobic reactors. Four reactors were operated at 30 °C with 5-day feeding. The first two reactors were fed with a slurry of napier grass alone at 10 % (napier grass:water = 10:90) and 20 % (napier grass:water = 20:80) by fresh weight. The other two reactors were fed with a mixture of napier grass and cow dung at separate concentrations of 10 % (napier grass:cow dung:water = 5:5:90) and 20 % (napier grass:cow dung:water = 10:10:80), respectively. Mixed ruminal microorganisms of approximately 8.5 g mixed liquor volatile suspended solids per litre were used as the inoculum. Each reactor working volume was 5 L and the feeding rate was 625 ml per 5 days resulting in a hydraulic retention time of 40 days. The pH was initially adjusted to be neutral in all reactors and the reactors functioned without any further pH control. The results showed that co-digestion of the mixture of napier grass and cow dung gave a higher yield than that of napier grass alone. The highest methane yield was obtained from the reactor that contained the 20 % mixture of napier grass and cow dung (napier grass: cow dung:water = 10:10:80) with 143 L at STP per kg chemical oxygen demand (COD) added and 169 L at STP per kg total volatile solids (TVS) added. The pH of the reactor was just over 7.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRef Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRef
2.
Zurück zum Zitat Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuel Bioprod Bior 4:447–458CrossRef Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuel Bioprod Bior 4:447–458CrossRef
3.
Zurück zum Zitat Korres NE, Thamsiriroj T, Smyth BM, Nizami AS, Singh A, Murphy JD (2011) Grass biomethane for agriculture and energy. In: Genetics, biofuels and local farming systems. Springer, Netherlands Korres NE, Thamsiriroj T, Smyth BM, Nizami AS, Singh A, Murphy JD (2011) Grass biomethane for agriculture and energy. In: Genetics, biofuels and local farming systems. Springer, Netherlands
4.
Zurück zum Zitat Bernet N, Beline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100:5431–5436CrossRef Bernet N, Beline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100:5431–5436CrossRef
5.
Zurück zum Zitat Murphy JD, Power NM (2009) An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass Bioenerg 33:504–512CrossRef Murphy JD, Power NM (2009) An argument for using biomethane generated from grass as a biofuel in Ireland. Biomass Bioenerg 33:504–512CrossRef
6.
Zurück zum Zitat Burton CH, Turner C (2003) Anaerobic treatment options for animal manures. In: Beck JAF, Martinez J, Martens W, Pahl O, Piccinini S, Svoboda I (eds) Manure management-treatment strategies for sustainable agriculture. Silsoe Research Institute, Silsoe Burton CH, Turner C (2003) Anaerobic treatment options for animal manures. In: Beck JAF, Martinez J, Martens W, Pahl O, Piccinini S, Svoboda I (eds) Manure management-treatment strategies for sustainable agriculture. Silsoe Research Institute, Silsoe
7.
Zurück zum Zitat Chynoweth DP, Wilkie AC, Owens JM (1999) Anaerobic treatment of piggery slurry-review. Asian Austral J Anim 12:607–628CrossRef Chynoweth DP, Wilkie AC, Owens JM (1999) Anaerobic treatment of piggery slurry-review. Asian Austral J Anim 12:607–628CrossRef
8.
Zurück zum Zitat Vandevivere P (1999) New and broad applications of anaerobic digestion. Crit Rev Env Sci Tec 29:151–173CrossRef Vandevivere P (1999) New and broad applications of anaerobic digestion. Crit Rev Env Sci Tec 29:151–173CrossRef
9.
Zurück zum Zitat Woodard KR, Prine GM (1993) Dry matter accumulation of elephant grass, energy cane, and elephant millet in a subtropical climate. Crop Sci 33:818–824CrossRef Woodard KR, Prine GM (1993) Dry matter accumulation of elephant grass, energy cane, and elephant millet in a subtropical climate. Crop Sci 33:818–824CrossRef
10.
Zurück zum Zitat Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399CrossRef Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399CrossRef
11.
Zurück zum Zitat Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA (2002) Use of calliandrae napier grass contour hedges to control erosion in central Kenya. Agric Ecosyst Env 91:15–23CrossRef Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA (2002) Use of calliandrae napier grass contour hedges to control erosion in central Kenya. Agric Ecosyst Env 91:15–23CrossRef
12.
Zurück zum Zitat Jewell WJ, Cummings RJ, Richards BK (1993) Methane fermentation of energy crops: maximum conversion kinetics and in situ biogas purification. Biomass Bioenerg 5:261–278CrossRef Jewell WJ, Cummings RJ, Richards BK (1993) Methane fermentation of energy crops: maximum conversion kinetics and in situ biogas purification. Biomass Bioenerg 5:261–278CrossRef
13.
Zurück zum Zitat Schank SC, Chynoweth DP, Turick CE, Mendoza PE (1993) Napier grass genotypes and plant parts for biomass energy. Biomass Bioenerg 4:1–7CrossRef Schank SC, Chynoweth DP, Turick CE, Mendoza PE (1993) Napier grass genotypes and plant parts for biomass energy. Biomass Bioenerg 4:1–7CrossRef
14.
Zurück zum Zitat Purseglove JW (1985) Tropical crops (Monocotyledons). Longman Group, Harlow Essex Purseglove JW (1985) Tropical crops (Monocotyledons). Longman Group, Harlow Essex
15.
Zurück zum Zitat Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macro pollutants. Rev Env Sci Biotechnol 3:117–129CrossRef Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macro pollutants. Rev Env Sci Biotechnol 3:117–129CrossRef
16.
Zurück zum Zitat Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–240CrossRef Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–240CrossRef
17.
Zurück zum Zitat Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52:245–253CrossRef Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52:245–253CrossRef
18.
Zurück zum Zitat Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111CrossRef Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111CrossRef
19.
Zurück zum Zitat Gunaseelan VN (2007) Regression models of ultimate methane yields of fruit and vegetable solid wastres, sorghum and napier grass on chemical composition. Bioresour Technol 98:1270–1277CrossRef Gunaseelan VN (2007) Regression models of ultimate methane yields of fruit and vegetable solid wastres, sorghum and napier grass on chemical composition. Bioresour Technol 98:1270–1277CrossRef
20.
Zurück zum Zitat Hansen TL, Schmidt JE, Angelidaki I, Marca E, Jansen JC, Mosbæk H, Christensen TH (2004) Method for determination of methane potentials of solid organic waste. Waste Manag 24:393–400CrossRef Hansen TL, Schmidt JE, Angelidaki I, Marca E, Jansen JC, Mosbæk H, Christensen TH (2004) Method for determination of methane potentials of solid organic waste. Waste Manag 24:393–400CrossRef
21.
Zurück zum Zitat Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492CrossRef Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492CrossRef
22.
Zurück zum Zitat Montoneri E, Savarino P, Bottigliengo S, Boffa V, Prevot AB, Fabbri D (2009) Biomass wastes as renewable source of energy and chemicals for the industry with friendly environmental impact. Fresen Env Bull 18:219–223 Montoneri E, Savarino P, Bottigliengo S, Boffa V, Prevot AB, Fabbri D (2009) Biomass wastes as renewable source of energy and chemicals for the industry with friendly environmental impact. Fresen Env Bull 18:219–223
23.
Zurück zum Zitat Romano RT, Zhang RH (2008) Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresour Technol 99:631–637CrossRef Romano RT, Zhang RH (2008) Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresour Technol 99:631–637CrossRef
24.
Zurück zum Zitat Shyam M, Sharma PK (1994) Solid-state anaerobic digestion of cattle dung and agro-residues in small capacity field digesters. Bioresour Technol 48:203–207CrossRef Shyam M, Sharma PK (1994) Solid-state anaerobic digestion of cattle dung and agro-residues in small capacity field digesters. Bioresour Technol 48:203–207CrossRef
25.
Zurück zum Zitat Demirbas A, Ozturk T (2004) Anaerobic digestion of agricultural solid residues. Int J Green Energy 1:483–494CrossRef Demirbas A, Ozturk T (2004) Anaerobic digestion of agricultural solid residues. Int J Green Energy 1:483–494CrossRef
26.
Zurück zum Zitat Sterling MC Jr, Lacey RE, Engler CR, Ricke SC (2001) Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of cattle manure. Bioresour Technol 77:9–18CrossRef Sterling MC Jr, Lacey RE, Engler CR, Ricke SC (2001) Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of cattle manure. Bioresour Technol 77:9–18CrossRef
27.
Zurück zum Zitat Qi BC, Aldrich C, Lorenzen L, Wolfaardt GW (2005) Acidogenic fermentation of lignocellulosic substrate with activated sludge. Chem Eng Commun 192:1221–1242CrossRef Qi BC, Aldrich C, Lorenzen L, Wolfaardt GW (2005) Acidogenic fermentation of lignocellulosic substrate with activated sludge. Chem Eng Commun 192:1221–1242CrossRef
28.
Zurück zum Zitat American Public Health Association and American Water Works Association (APHA and AWWA) (2005) Standard methods for the examination of water and wastewater, 21st ed. Washington, DC American Public Health Association and American Water Works Association (APHA and AWWA) (2005) Standard methods for the examination of water and wastewater, 21st ed. Washington, DC
29.
Zurück zum Zitat Tchobanoglous G, Burton FL (1991) Wastewater engineering treatment, disposal, and reuse, revised from Metcalf & Eddy Inc., 3rd edn. McGraw Hill Inc., Singapore Tchobanoglous G, Burton FL (1991) Wastewater engineering treatment, disposal, and reuse, revised from Metcalf & Eddy Inc., 3rd edn. McGraw Hill Inc., Singapore
30.
Zurück zum Zitat Gunaseelan V, Nallathambi S (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114CrossRef Gunaseelan V, Nallathambi S (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114CrossRef
31.
Zurück zum Zitat Buxton DR (1996) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Technol 59:37–49CrossRef Buxton DR (1996) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Technol 59:37–49CrossRef
32.
Zurück zum Zitat Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293CrossRef Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293CrossRef
33.
Zurück zum Zitat Lehtomaki A, Huttunen S, Rintala J (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609CrossRef Lehtomaki A, Huttunen S, Rintala J (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609CrossRef
34.
Zurück zum Zitat Hashimoto AG (1983) Conversion of straw-manure mixtures to methane at mesophilic and thermophilic temperatures. Biotechnol Bioeng 25:185–200CrossRef Hashimoto AG (1983) Conversion of straw-manure mixtures to methane at mesophilic and thermophilic temperatures. Biotechnol Bioeng 25:185–200CrossRef
35.
Zurück zum Zitat Hills DJ, Roberts DW (1981) Anaerobic digestion of dairy manure and field crop residues. Agric Wastes 3:179–189CrossRef Hills DJ, Roberts DW (1981) Anaerobic digestion of dairy manure and field crop residues. Agric Wastes 3:179–189CrossRef
Metadaten
Titel
Methane Production from Napier Grass by Co-digestion with Cow Dung
verfasst von
Suriya Sawanon
Piyanee Sangsri
Suchat Leungprasert
Nusara Sinbuathong
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-26950-4_7