Skip to main content

2019 | OriginalPaper | Buchkapitel

9. Methane Storage on Metal-Organic Frameworks

verfasst von : Anne Dailly, Matthew Beckner

Erschienen in: Nanoporous Materials for Gas Storage

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High surface area and high porosity metal-organic frameworks (MOF) are an attractive option to store methane at ambient temperature and low pressure (50 bar). More than 40 MOFs have been investigated for their methane storage ability. Like the Chahine rule for cryogenic hydrogen adsorption, it was found that for every 1000 m2 of specific surface area, one can expect 0.06 g/g of maximum methane excess adsorption. With few exceptions, this is largely independent of surface chemistry and geometry. This rule can be broken by materials with optimal pore sizes (∼7 Å) and materials with open metal sites. The thermodynamics of adsorption, as it pertains to applications of methane storage, are discussed. Pelletization of the benchmark MOF, Cu3btc2, was found to have little effect on the storage capacity of the adsorbent. However, when pilot-scale amounts of material were tested, pelletization improved thermal management and increased the permeability. Both were attributed to the extra free space around the pellets. Additionally, on the pilot scale, all MOFs showed improved permeability compared to the benchmark activated carbon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
High temperatures are desired to drive moisture and volatiles from the MOF surface. However, each MOF will degrade if heated to too high a temperature. The degas temperature was therefore chosen for each MOF to be high enough to remove unwanted guest molecules but low enough to ensure the MOF would no decompose.
 
2
Note: For this calculation, the area per adsorption site was assumed to be 33 Å2. This was based on the critical density of methane α(T) = (1/ρ critical)2/3 at 293 K and pressures greater than 1 bar.
 
Literatur
1.
Zurück zum Zitat Peplow M (2015) Materials Science: the holy story. Nature 520(7546):148–150CrossRef Peplow M (2015) Materials Science: the holy story. Nature 520(7546):148–150CrossRef
2.
Zurück zum Zitat Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472CrossRef Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472CrossRef
3.
Zurück zum Zitat Lozano-Castelló D, Alcaniz-Monge J, de la Casa-Lillo M et al (2002) Advances in the study of methane storage in porous carbonaceous materials. Fuel 81:1777–1803CrossRef Lozano-Castelló D, Alcaniz-Monge J, de la Casa-Lillo M et al (2002) Advances in the study of methane storage in porous carbonaceous materials. Fuel 81:1777–1803CrossRef
4.
Zurück zum Zitat Wegrzyn J, Gurevitch M (1999) Adsorbent storage of natural gas. Appl Energy 55:71–83CrossRef Wegrzyn J, Gurevitch M (1999) Adsorbent storage of natural gas. Appl Energy 55:71–83CrossRef
5.
Zurück zum Zitat Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58CrossRef Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58CrossRef
6.
Zurück zum Zitat Elliott D, Topaloglu T (1986) The development of new adsorbent materials for the storage of natural gas on-board vehicles. Conf Proc Gaseous Fuels Transp I:489–504 Elliott D, Topaloglu T (1986) The development of new adsorbent materials for the storage of natural gas on-board vehicles. Conf Proc Gaseous Fuels Transp I:489–504
7.
Zurück zum Zitat US Department of Energy. Transportation Energy Data Book 2014 US Department of Energy. Transportation Energy Data Book 2014
8.
Zurück zum Zitat Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566CrossRef Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566CrossRef
9.
Zurück zum Zitat Dialyzed S, Tyke M, Dialyzed F (1967) Adsorption equilibria in the methane-propane-silica gel system at high pressures. Ind Eng Chem Fundam 6:546–554CrossRef Dialyzed S, Tyke M, Dialyzed F (1967) Adsorption equilibria in the methane-propane-silica gel system at high pressures. Ind Eng Chem Fundam 6:546–554CrossRef
10.
Zurück zum Zitat Grant RJ, Manes M (1966) Adsorption of binary hydrocarbon gas mixtures on activated carbon. Ind Eng Chem Fundam 5:490–498CrossRef Grant RJ, Manes M (1966) Adsorption of binary hydrocarbon gas mixtures on activated carbon. Ind Eng Chem Fundam 5:490–498CrossRef
11.
Zurück zum Zitat Shen J, Dailly A, Beckner M (2016) Natural Gas sorption evaluation on microporous materials. Microporous Mesoporous Mater 235:170–177CrossRef Shen J, Dailly A, Beckner M (2016) Natural Gas sorption evaluation on microporous materials. Microporous Mesoporous Mater 235:170–177CrossRef
12.
Zurück zum Zitat Burress J, Kraus M, Beckner M et al (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026CrossRef Burress J, Kraus M, Beckner M et al (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026CrossRef
13.
Zurück zum Zitat He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal–organic frameworks. Chem Soc Rev 43:5657–5678CrossRef He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal–organic frameworks. Chem Soc Rev 43:5657–5678CrossRef
14.
Zurück zum Zitat Koh HS, Rana MK, Wong-Foy AG, Siegel DJ (2015) Predicting methane storage in open-metal-site metal–organic frameworks. J Phys Chem C 119(24):13451–13458CrossRef Koh HS, Rana MK, Wong-Foy AG, Siegel DJ (2015) Predicting methane storage in open-metal-site metal–organic frameworks. J Phys Chem C 119(24):13451–13458CrossRef
15.
Zurück zum Zitat Broom DP (2011) Hydrogen storage materials: the characterization of their storage properties. Springer-Verlag, LondonCrossRef Broom DP (2011) Hydrogen storage materials: the characterization of their storage properties. Springer-Verlag, LondonCrossRef
16.
Zurück zum Zitat Beckner M, Dailly A (2016) A pilot study of activated carbon and metal-organic frameworks for methane storage. Appl Energy 162:306–514CrossRef Beckner M, Dailly A (2016) A pilot study of activated carbon and metal-organic frameworks for methane storage. Appl Energy 162:306–514CrossRef
17.
Zurück zum Zitat Voskuilen T, Zhang Y, Pourpoint T (2010) Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials. Int J Hydrog Energy 35:10387–10395CrossRef Voskuilen T, Zhang Y, Pourpoint T (2010) Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials. Int J Hydrog Energy 35:10387–10395CrossRef
18.
Zurück zum Zitat Beckner M, Dailly A (2015) Adsorbed methane storage for vehicular applications. Appl Energy 149:69–74CrossRef Beckner M, Dailly A (2015) Adsorbed methane storage for vehicular applications. Appl Energy 149:69–74CrossRef
19.
Zurück zum Zitat Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129CrossRef
20.
Zurück zum Zitat Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382CrossRef Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382CrossRef
21.
Zurück zum Zitat Chae H, Siberio-Perez D, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527CrossRef Chae H, Siberio-Perez D, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527CrossRef
22.
Zurück zum Zitat Koh K, Wong-Foy AG, Matzger AJ (2010) Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. J Am Chem Soc 132(42):15005–15010CrossRef Koh K, Wong-Foy AG, Matzger AJ (2010) Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. J Am Chem Soc 132(42):15005–15010CrossRef
23.
Zurück zum Zitat Chui SS, Lo SM, Charmant JP et al (1999) A chemically functionalizable nanoporous material. Science 283(5405):1148–1150CrossRef Chui SS, Lo SM, Charmant JP et al (1999) A chemically functionalizable nanoporous material. Science 283(5405):1148–1150CrossRef
24.
Zurück zum Zitat Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268–15269CrossRef Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268–15269CrossRef
25.
Zurück zum Zitat Ma S, Sun D, Simmons JM et al (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016CrossRef Ma S, Sun D, Simmons JM et al (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016CrossRef
26.
Zurück zum Zitat Feng D, Wang K, Wei Z et al (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun 5:5723CrossRef Feng D, Wang K, Wei Z et al (2014) Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat Commun 5:5723CrossRef
27.
Zurück zum Zitat Kim J, Yang ST, Choi SB et al (2011) Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21(9):3070–3076CrossRef Kim J, Yang ST, Choi SB et al (2011) Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21(9):3070–3076CrossRef
28.
Zurück zum Zitat Wang XS, Ma S, Rauch K et al (2008) Metal−organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater 20(9):3145–3152CrossRef Wang XS, Ma S, Rauch K et al (2008) Metal−organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater 20(9):3145–3152CrossRef
29.
Zurück zum Zitat Wu H, Simmons JM, Liu Y et al (2010) Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chem-Eur J 16(17):5205–5214CrossRef Wu H, Simmons JM, Liu Y et al (2010) Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chem-Eur J 16(17):5205–5214CrossRef
30.
Zurück zum Zitat Schaate A, Dühnen S, Platz G et al (2012) A novel Zr-based porous coordination polymer containing azobenzenedicarboxylate as a linker. Eur J Inorg Chem 5:790–796CrossRef Schaate A, Dühnen S, Platz G et al (2012) A novel Zr-based porous coordination polymer containing azobenzenedicarboxylate as a linker. Eur J Inorg Chem 5:790–796CrossRef
31.
Zurück zum Zitat Guo Z, Wu H, Srinivas G et al (2011) A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew Chem Int Ed 50(14):3178–3181CrossRef Guo Z, Wu H, Srinivas G et al (2011) A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew Chem Int Ed 50(14):3178–3181CrossRef
32.
Zurück zum Zitat Wei Z, Lu W, Jiang HL, Zhou HC (2013) A route to metal−organic frameworks through framework templating. Inorg Chem 52:1164–1166CrossRef Wei Z, Lu W, Jiang HL, Zhou HC (2013) A route to metal−organic frameworks through framework templating. Inorg Chem 52:1164–1166CrossRef
33.
Zurück zum Zitat Zhao D, Timmons DJ, Yuan D, Zhou HC (2010) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44(2):123–133CrossRef Zhao D, Timmons DJ, Yuan D, Zhou HC (2010) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44(2):123–133CrossRef
34.
Zurück zum Zitat Liu Y, Li JR, Verdegaal WM et al (2013) Isostructural metal–organic frameworks assembled from functionalized diisophthalate ligands through a ligand-truncation strategy. Chem Eur J 19:5637–5643CrossRef Liu Y, Li JR, Verdegaal WM et al (2013) Isostructural metal–organic frameworks assembled from functionalized diisophthalate ligands through a ligand-truncation strategy. Chem Eur J 19:5637–5643CrossRef
35.
Zurück zum Zitat Jiang HL, Feng D, Liu TF et al (2012) Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal−organic frameworks. J Am Chem Soc 134:14690–14693CrossRef Jiang HL, Feng D, Liu TF et al (2012) Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal−organic frameworks. J Am Chem Soc 134:14690–14693CrossRef
36.
Zurück zum Zitat Wilmer CE, Leaf M, Lee CY et al (2012) Large-scale screening of hypothetical metal–organic frameworks. Nat Chem 4:83–89CrossRef Wilmer CE, Leaf M, Lee CY et al (2012) Large-scale screening of hypothetical metal–organic frameworks. Nat Chem 4:83–89CrossRef
37.
Zurück zum Zitat Yan Y, Yang S, Blake AJ, Schröder M (2014) Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Acc Chem Res 47(2):296–307CrossRef Yan Y, Yang S, Blake AJ, Schröder M (2014) Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Acc Chem Res 47(2):296–307CrossRef
38.
Zurück zum Zitat Zhuang W, Yuan D, Liu D et al (2012) Robust metal−organic framework with an octatopic ligand for gas adsorption and separation: combined characterization by experiments and molecular simulation. Chem Mater 24:18–25CrossRef Zhuang W, Yuan D, Liu D et al (2012) Robust metal−organic framework with an octatopic ligand for gas adsorption and separation: combined characterization by experiments and molecular simulation. Chem Mater 24:18–25CrossRef
39.
Zurück zum Zitat Yan Y, Yang S, Blake AJ et al (2011) A mesoporous metal–organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chem Commun 47(36):9995–9997CrossRef Yan Y, Yang S, Blake AJ et al (2011) A mesoporous metal–organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chem Commun 47(36):9995–9997CrossRef
40.
Zurück zum Zitat Yan Y, Lin X, Yang S et al (2009) Exceptionally high H2storage by a metal–organic polyhedral framework. Chem Commun 9(0):1025–1027CrossRef Yan Y, Lin X, Yang S et al (2009) Exceptionally high H2storage by a metal–organic polyhedral framework. Chem Commun 9(0):1025–1027CrossRef
41.
Zurück zum Zitat Park J, Li JR, Chen YP et al (2012) A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chem Commun 80(48):9995–9997CrossRef Park J, Li JR, Chen YP et al (2012) A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chem Commun 80(48):9995–9997CrossRef
42.
Zurück zum Zitat Feng D, Gu ZY, Chen YP et al (2014) A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J Am Chem Soc 136(51):17714–17717CrossRef Feng D, Gu ZY, Chen YP et al (2014) A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J Am Chem Soc 136(51):17714–17717CrossRef
43.
Zurück zum Zitat Feng D, Chung WC, Wei Z et al (2013) Construction of ultrastable porphyrin Zr metal−organic frameworks through linker elimination. J Am Chem Soc 135:17105–17110CrossRef Feng D, Chung WC, Wei Z et al (2013) Construction of ultrastable porphyrin Zr metal−organic frameworks through linker elimination. J Am Chem Soc 135:17105–17110CrossRef
44.
Zurück zum Zitat Choi HJ, Dinca M, Dailly A, Long JR (2010) Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy Environ Sci 3:17–123CrossRef Choi HJ, Dinca M, Dailly A, Long JR (2010) Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy Environ Sci 3:17–123CrossRef
45.
Zurück zum Zitat Dinca M, Dailly A, Long JR (2008) Structure and charge control in metal–organic frameworks based on the tetrahedral ligand tetrakis(4-tetrazolylphenyl)methane. Chem-Eur J 14(33):10280–10285CrossRef Dinca M, Dailly A, Long JR (2008) Structure and charge control in metal–organic frameworks based on the tetrahedral ligand tetrakis(4-tetrazolylphenyl)methane. Chem-Eur J 14(33):10280–10285CrossRef
46.
Zurück zum Zitat Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069 Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069
47.
Zurück zum Zitat Chahine R, Bose TK (1996) Hydrogen energy progress XI. T N Veziroglu et al Editors 1259 Chahine R, Bose TK (1996) Hydrogen energy progress XI. T N Veziroglu et al Editors 1259
48.
Zurück zum Zitat Chahine R, Benard B (1998) Advances in cryogenics engineering, vol 43. Plenum Press, New York, p 1257CrossRef Chahine R, Benard B (1998) Advances in cryogenics engineering, vol 43. Plenum Press, New York, p 1257CrossRef
49.
Zurück zum Zitat Hirscher M, Panella B, Schmidt B (2010) Metal organic frameworks for hydrogen storage. Microporous Mesoporous Mater 129:335–339CrossRef Hirscher M, Panella B, Schmidt B (2010) Metal organic frameworks for hydrogen storage. Microporous Mesoporous Mater 129:335–339CrossRef
50.
Zurück zum Zitat Poirier E (2014) Ultimate H2 and CH4 adsorption in slit-like carbon nanopores at 298 K: a molecular dynamics study. RSC Adv 4(44):22848–22855CrossRef Poirier E (2014) Ultimate H2 and CH4 adsorption in slit-like carbon nanopores at 298 K: a molecular dynamics study. RSC Adv 4(44):22848–22855CrossRef
51.
Zurück zum Zitat Kurniawan Y, Bathia SK, Rudolph V (2006) Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons. AICHE J 52(3):957–967CrossRef Kurniawan Y, Bathia SK, Rudolph V (2006) Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons. AICHE J 52(3):957–967CrossRef
52.
Zurück zum Zitat Wu H, Zhou W, Yildirim T (2009) High capacity storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000CrossRef Wu H, Zhou W, Yildirim T (2009) High capacity storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000CrossRef
53.
Zurück zum Zitat He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal organic frameworks. Chem Soc Rev 16(43):5657–5678CrossRef He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal organic frameworks. Chem Soc Rev 16(43):5657–5678CrossRef
54.
Zurück zum Zitat Dietzel PDC, Panella B, Hirscher M et al (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961CrossRef Dietzel PDC, Panella B, Hirscher M et al (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961CrossRef
55.
Zurück zum Zitat Richard MA, Benard B, Chahine R (2009) Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model. Adsorption 15(1):43–51CrossRef Richard MA, Benard B, Chahine R (2009) Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model. Adsorption 15(1):43–51CrossRef
56.
Zurück zum Zitat Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126(18):5666–5667CrossRef Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126(18):5666–5667CrossRef
57.
Zurück zum Zitat Purewal J, Liu D, Sudik A et al (2012) Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J Phys Chem 116(38):20199–20212 Purewal J, Liu D, Sudik A et al (2012) Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J Phys Chem 116(38):20199–20212
58.
Zurück zum Zitat Ming Y, Purewal J, Liu D et al (2014) Thermophysical properties of MOF-5 powder. Microporous Mesoporous Mater 185:235–244CrossRef Ming Y, Purewal J, Liu D et al (2014) Thermophysical properties of MOF-5 powder. Microporous Mesoporous Mater 185:235–244CrossRef
Metadaten
Titel
Methane Storage on Metal-Organic Frameworks
verfasst von
Anne Dailly
Matthew Beckner
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3504-4_9