Skip to main content

2012 | OriginalPaper | Buchkapitel

5. Methanol Steam Reforming

verfasst von : Malte Behrens, Marc Armbrüster

Erschienen in: Catalysis for Alternative Energy Generation

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The currently increasing interest in catalytic reactions of methanol, CH3OH, is—in addition to its customary role as an important base chemical and feedstock for value-added molecules—due to its potential as a chemical storage molecule for hydrogen. For mobile applications, e.g. in the transportation sector, hydrogen can be produced onboard from methanol by the methanol steam reforming reaction and used as a fuel for a downstream polymer electrolyte fuel cell (PEMFC). Methanol is industrially produced from natural gas- or coal-derived syngas, but can in principle also be synthesized from CO2 by hydrogenation. Methanol might thus play a key role in the transition toward a future energy scenario, which has to be more and more independent from fossil sources. This chapter focuses mainly on the challenges of catalyst development for methanol steam reforming. It is divided into two parts treating different families of catalytic materials: the widely studied Cu-based catalysts, and intermetallic compounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sato M (1998) R&D activities in Japan on methanol synthesis from CO2 and H2. Catal Surv Jpn 2:175–184 Sato M (1998) R&D activities in Japan on methanol synthesis from CO2 and H2. Catal Surv Jpn 2:175–184
2.
Zurück zum Zitat Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim
3.
Zurück zum Zitat Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222 Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222
4.
Zurück zum Zitat Christiansen JA (1921) A reaction between methyl alcohol and water and some related reactions. J Am Chem Soc 43:1670–1672 Christiansen JA (1921) A reaction between methyl alcohol and water and some related reactions. J Am Chem Soc 43:1670–1672
5.
Zurück zum Zitat Prigent M (1997) On board hydrogen generation for fuel cell powered electric cars—a review of various available techniques. Rev Inst Fr Pét 52:349–359 Prigent M (1997) On board hydrogen generation for fuel cell powered electric cars—a review of various available techniques. Rev Inst Fr Pét 52:349–359
6.
Zurück zum Zitat Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossils fuels and biomass. Chem Rev 107:3952–3991 Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossils fuels and biomass. Chem Rev 107:3952–3991
7.
Zurück zum Zitat Sá S, Silva H, Brandão L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57 Sá S, Silva H, Brandão L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57
8.
Zurück zum Zitat De Wild PJ, Verhaak MJFM (2000) Catalytic production of hydrogen from methanol. Catal Today 60:3–10 De Wild PJ, Verhaak MJFM (2000) Catalytic production of hydrogen from methanol. Catal Today 60:3–10
9.
Zurück zum Zitat Joensen F, Rostrup-Nielsen JR (2002) Conversion of hydrocarbons and alcohols for fuel cells. J Power Sources 105:195–201 Joensen F, Rostrup-Nielsen JR (2002) Conversion of hydrocarbons and alcohols for fuel cells. J Power Sources 105:195–201
10.
Zurück zum Zitat Cheekatamarla PK, Finnerty CM (2006) Reforming catalysts for hydrogen generation in fuel cell applications. J Power Sources 160:490–499 Cheekatamarla PK, Finnerty CM (2006) Reforming catalysts for hydrogen generation in fuel cell applications. J Power Sources 160:490–499
11.
Zurück zum Zitat Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992–4021 Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992–4021
12.
Zurück zum Zitat Velu S, Suzuki K, Osaki T (1999) Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells. Chem Commun 2341–2342 Velu S, Suzuki K, Osaki T (1999) Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells. Chem Commun 2341–2342
13.
Zurück zum Zitat Lattner JR, Harold MP (2007) Autothermal reforming of methanol: experiments and modeling. Catal Today 130:78–89 Lattner JR, Harold MP (2007) Autothermal reforming of methanol: experiments and modeling. Catal Today 130:78–89
14.
Zurück zum Zitat Park ED, Lee D, Lee HC (2009) Recent progress in selective CO removal in a H2-rich stream. Catal Today 139:280–290 Park ED, Lee D, Lee HC (2009) Recent progress in selective CO removal in a H2-rich stream. Catal Today 139:280–290
15.
Zurück zum Zitat Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J Catal 219:389–403 Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J Catal 219:389–403
16.
Zurück zum Zitat Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) Production of hydrogen from oxidative steam reforming of methanol—II. catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. J Catal 228:56–65 Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) Production of hydrogen from oxidative steam reforming of methanol—II. catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. J Catal 228:56–65
17.
Zurück zum Zitat Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlögl R, Ressler T (2008) Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming—a comparative study. Appl Catal A 348:153–164 Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlögl R, Ressler T (2008) Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming—a comparative study. Appl Catal A 348:153–164
18.
Zurück zum Zitat Velu S, Suzuki K (2003) Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance. Top Catal 22:235–244 Velu S, Suzuki K (2003) Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance. Top Catal 22:235–244
19.
Zurück zum Zitat Purnama H, Girgsdies F, Ressler T, Schattka JH, Caruso RA, Schomäcker R, Schlögl R (2004) Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol. Catal Lett 94:61–68 Purnama H, Girgsdies F, Ressler T, Schattka JH, Caruso RA, Schomäcker R, Schlögl R (2004) Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol. Catal Lett 94:61–68
20.
Zurück zum Zitat Ritzkopf I, Vukojevic S, Weidenthaler C, Grunwaldt JD, Schüth F (2006) Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique. Appl Catal A 302:215–223 Ritzkopf I, Vukojevic S, Weidenthaler C, Grunwaldt JD, Schüth F (2006) Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique. Appl Catal A 302:215–223
21.
Zurück zum Zitat Liu Y, Hayakawa T, Suzuki K, Hamakawa S, Tsunody T, Ishii T, Kumagai M (2002) Highly active copper/ceria catalysts for steam reforming of methanol. Appl Catal A 223:137–145 Liu Y, Hayakawa T, Suzuki K, Hamakawa S, Tsunody T, Ishii T, Kumagai M (2002) Highly active copper/ceria catalysts for steam reforming of methanol. Appl Catal A 223:137–145
22.
Zurück zum Zitat Tsai AP, Yoshimura M (2001) Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl Catal A 214:237–241 Tsai AP, Yoshimura M (2001) Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl Catal A 214:237–241
23.
Zurück zum Zitat Ma L, Gong B, Tran T, Wainwright MS (2000) Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal Today 63:499–505 Ma L, Gong B, Tran T, Wainwright MS (2000) Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal Today 63:499–505
24.
Zurück zum Zitat Jang JH, Xu Y, Chun DH, Demura M, Wee DM, Hirano T (2009) Effects of steam addition on the spontaneous activation in Ni3Al Foil catalysts during methanol decomposition. J Mol Catal A 307:21–28 Jang JH, Xu Y, Chun DH, Demura M, Wee DM, Hirano T (2009) Effects of steam addition on the spontaneous activation in Ni3Al Foil catalysts during methanol decomposition. J Mol Catal A 307:21–28
25.
Zurück zum Zitat Takahashi T, Inoue M, Kai T (2001) Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys. Appl Catal A 218:189–195 Takahashi T, Inoue M, Kai T (2001) Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys. Appl Catal A 218:189–195
26.
Zurück zum Zitat Iwasa N, Nomura W, Mayanagi T, Fujita SI, Arai M, Takezawa N (2004) Hydrogen production by steam reforming of methanol. J Chem Eng Jpn 37:286–293 Iwasa N, Nomura W, Mayanagi T, Fujita SI, Arai M, Takezawa N (2004) Hydrogen production by steam reforming of methanol. J Chem Eng Jpn 37:286–293
27.
Zurück zum Zitat Iwasa N, Masuda S, Takezawa N (1995) Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO. React Kinet Catal Lett 55:349–353 Iwasa N, Masuda S, Takezawa N (1995) Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO. React Kinet Catal Lett 55:349–353
28.
Zurück zum Zitat Iwasa N, Mayanagi T, Ogawa N, Sakata K, Takezawa N (1998) New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversion of methanol. Catal Lett 54:119–123 Iwasa N, Mayanagi T, Ogawa N, Sakata K, Takezawa N (1998) New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversion of methanol. Catal Lett 54:119–123
29.
Zurück zum Zitat Xia G, Holladay JD, Dagle RA, Jones EO, Wang Y (2005) Development of highly active Pd-ZnO/Al2O3 catalysts for microscale fuel processor applications. Chem Eng Technol 28:515–519 Xia G, Holladay JD, Dagle RA, Jones EO, Wang Y (2005) Development of highly active Pd-ZnO/Al2O3 catalysts for microscale fuel processor applications. Chem Eng Technol 28:515–519
30.
Zurück zum Zitat Tsai AP, Kameoka S, Ishii Y (2004) PdZn=Cu: can an intermetallic compound replace an element? J Phys Soc Jpn 73:3270–3273 Tsai AP, Kameoka S, Ishii Y (2004) PdZn=Cu: can an intermetallic compound replace an element? J Phys Soc Jpn 73:3270–3273
31.
Zurück zum Zitat Jiang CJ, Trimm DL, Wainwright MS, Cant NW (1993) Kinetic mechanism for the reaction between methanol and water over A Cu-ZnO-Al2O3 catalyst. Appl Catal A 97:145–158 Jiang CJ, Trimm DL, Wainwright MS, Cant NW (1993) Kinetic mechanism for the reaction between methanol and water over A Cu-ZnO-Al2O3 catalyst. Appl Catal A 97:145–158
32.
Zurück zum Zitat Takezawa N, Iwasa N (1997) Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal Today 36:45–56 Takezawa N, Iwasa N (1997) Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal Today 36:45–56
33.
Zurück zum Zitat Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A 179:31–49 Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A 179:31–49
34.
Zurück zum Zitat Rozovskii AY, Lin GI (2003) Fundamentals of methanol synthesis and decomposition. Top Catal 22:137–150 Rozovskii AY, Lin GI (2003) Fundamentals of methanol synthesis and decomposition. Top Catal 22:137–150
35.
Zurück zum Zitat Lee JK, Ko JB, Kim DH (2004) Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl Catal A 278:25–35 Lee JK, Ko JB, Kim DH (2004) Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl Catal A 278:25–35
36.
Zurück zum Zitat Peppley BA, Amphlett JC, Kearns LM, Mann RF (2005) Methanol steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A 179:21–29 Peppley BA, Amphlett JC, Kearns LM, Mann RF (2005) Methanol steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A 179:21–29
37.
Zurück zum Zitat Frank B, Jentoft FC, Soerijanto H, Kröhnert J, Schlögl R, Schomäcker R (2007) Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics. J Catal 246:177–192 Frank B, Jentoft FC, Soerijanto H, Kröhnert J, Schlögl R, Schomäcker R (2007) Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics. J Catal 246:177–192
38.
Zurück zum Zitat Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew Chem 119:7465–7468 Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew Chem 119:7465–7468
39.
Zurück zum Zitat Chinchen GC, Hay CM, Vanderwell HD, Waugh KC (1987) The measurement of copper surface areas by reactive frontal chromatography. J Catal 103:79–86 Chinchen GC, Hay CM, Vanderwell HD, Waugh KC (1987) The measurement of copper surface areas by reactive frontal chromatography. J Catal 103:79–86
40.
Zurück zum Zitat Hinrichsen O, Genger T, Muhler M (2000) Chemisorption of N2O and H2 for the surface determination of copper catalysts. Chem Eng Technol 11:956–959 Hinrichsen O, Genger T, Muhler M (2000) Chemisorption of N2O and H2 for the surface determination of copper catalysts. Chem Eng Technol 11:956–959
41.
Zurück zum Zitat Naumann d’Alnoncourt R, Graf B, Xia X, Muhler M (2008) The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics. J Therm Anal Calor 91:173–179 Naumann d’Alnoncourt R, Graf B, Xia X, Muhler M (2008) The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics. J Therm Anal Calor 91:173–179
42.
Zurück zum Zitat Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlögl R (2010) The potential of microstructural optimization in metal/oxide catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles. ChemCatChem 2:816–818 Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlögl R (2010) The potential of microstructural optimization in metal/oxide catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles. ChemCatChem 2:816–818
43.
Zurück zum Zitat Spencer MS (1999) The role of zinc oxide in Cu ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top Catal 8:259–266 Spencer MS (1999) The role of zinc oxide in Cu ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top Catal 8:259–266
44.
Zurück zum Zitat Hansen JB, Højlund Nielsen PE (2008) Methanol synthesis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogenous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 2920–2949 Hansen JB, Højlund Nielsen PE (2008) Methanol synthesis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogenous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 2920–2949
45.
Zurück zum Zitat Naumann d’Alnoncourt R, Xia X, Strunk J, Löffler E, Hinrichsen O, Muhler M (2006) The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Phys Chem Chem Phys 13:1525–1538 Naumann d’Alnoncourt R, Xia X, Strunk J, Löffler E, Hinrichsen O, Muhler M (2006) The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Phys Chem Chem Phys 13:1525–1538
46.
Zurück zum Zitat Grunwaldt JD, Molenbroek AM, Topsoe NY, Topsoe H, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460 Grunwaldt JD, Molenbroek AM, Topsoe NY, Topsoe H, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460
47.
Zurück zum Zitat Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2055 Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2055
48.
Zurück zum Zitat Spencer MS (1995) On the activation energies of the forward and reverse water-gas shift reaction. Catal Lett 32:9–13 Spencer MS (1995) On the activation energies of the forward and reverse water-gas shift reaction. Catal Lett 32:9–13
49.
Zurück zum Zitat Twigg MV, Spencer MS (2003) Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal 22:191–203 Twigg MV, Spencer MS (2003) Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal 22:191–203
50.
Zurück zum Zitat Hughes R (1994) Deactivation of catalysts. Academic, New York Hughes R (1994) Deactivation of catalysts. Academic, New York
51.
52.
Zurück zum Zitat Löffler DG, McDermott SD, Renn CN (2003) Activity and durability of water-gas shift catalysts used for the steam reforming of methanol. J Power Sources 114:15–20 Löffler DG, McDermott SD, Renn CN (2003) Activity and durability of water-gas shift catalysts used for the steam reforming of methanol. J Power Sources 114:15–20
53.
Zurück zum Zitat Thurgood CP, Amphlett JC, Mann RF, Peppley BA (2003) Deactivation of Cu/ZnO/Al2O3 catalyst: evolution of site concentrations with time. Top Catal 22:253–259 Thurgood CP, Amphlett JC, Mann RF, Peppley BA (2003) Deactivation of Cu/ZnO/Al2O3 catalyst: evolution of site concentrations with time. Top Catal 22:253–259
54.
Zurück zum Zitat Agarwal V, Patel S, Pant KK (2005) H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling. Appl Catal A 279:155–164 Agarwal V, Patel S, Pant KK (2005) H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling. Appl Catal A 279:155–164
55.
Zurück zum Zitat Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106:249–257 Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106:249–257
56.
Zurück zum Zitat Schimpf S, Muhler M (2009) Methanol catalysts. In: de Jong K (ed) Synthesis of solid catalysts. Wiley-VCH, Weinheim, pp 329–351 Schimpf S, Muhler M (2009) Methanol catalysts. In: de Jong K (ed) Synthesis of solid catalysts. Wiley-VCH, Weinheim, pp 329–351
57.
Zurück zum Zitat Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlögl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chemistry 9:2039–2052 Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlögl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chemistry 9:2039–2052
58.
Zurück zum Zitat Baltes C, Vukojevic S, Schüth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344 Baltes C, Vukojevic S, Schüth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344
59.
Zurück zum Zitat Shen GC, Fujita SI, Takezawa N (1992) Preparation of precursors for the Cu/ZnO methanol synthesis catalysis by coprecipitation methods—effects of The preparation conditions upon the structures of the precursors. J Catal 138:754–758 Shen GC, Fujita SI, Takezawa N (1992) Preparation of precursors for the Cu/ZnO methanol synthesis catalysis by coprecipitation methods—effects of The preparation conditions upon the structures of the precursors. J Catal 138:754–758
60.
Zurück zum Zitat Günter MM, Ressler T, Bems B, Büscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett 71:37–44 Günter MM, Ressler T, Bems B, Büscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett 71:37–44
61.
Zurück zum Zitat Waller D, Stirling D, Stone FS, Spencer MS (1989) Copper–Zinc oxide catalysts. Activity in relation to precursor structure and morphology. Faraday Dissuss Chem Soc 87:107–120 Waller D, Stirling D, Stone FS, Spencer MS (1989) Copper–Zinc oxide catalysts. Activity in relation to precursor structure and morphology. Faraday Dissuss Chem Soc 87:107–120
62.
Zurück zum Zitat Li JL, Inui T (1996) Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures. Appl Catal A Gen 137:105–117 Li JL, Inui T (1996) Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures. Appl Catal A Gen 137:105–117
63.
Zurück zum Zitat Whittle DM, Mirzaei AA, Hargreaves JSJ, Joyner RW, Kiely CJ, Taylor SH, Hutchings GJ (2002) Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. Phys Chem Chem Phys 4:5915–5920 Whittle DM, Mirzaei AA, Hargreaves JSJ, Joyner RW, Kiely CJ, Taylor SH, Hutchings GJ (2002) Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. Phys Chem Chem Phys 4:5915–5920
64.
Zurück zum Zitat Kniep BL, Ressler T, Rabis A, Girgsdies F, Baenitz M, Steglich F, Schlögl R (2003) Ratioal design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. Angew Chem Int Ed Engl 43:112–115 Kniep BL, Ressler T, Rabis A, Girgsdies F, Baenitz M, Steglich F, Schlögl R (2003) Ratioal design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. Angew Chem Int Ed Engl 43:112–115
65.
Zurück zum Zitat Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Fadilah Idris N, Bee Abd Hamid S, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Understanding the complexity of a catalyst synthesis: co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Appl Catal A 392:93–102 Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Fadilah Idris N, Bee Abd Hamid S, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Understanding the complexity of a catalyst synthesis: co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Appl Catal A 392:93–102
66.
Zurück zum Zitat Behrens M (2009) Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J Catal 267:24–29 Behrens M (2009) Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J Catal 267:24–29
67.
Zurück zum Zitat Schüth F, Hesse M, Unger KK (2008) Precipitation and coprecipitation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 100–119 Schüth F, Hesse M, Unger KK (2008) Precipitation and coprecipitation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 100–119
68.
Zurück zum Zitat Lok M (2009) Coprecipitation. In: de Jong K (ed) Synthesis of solid catalysts. Wiley-VCH, Weinheim, pp 135–151 Lok M (2009) Coprecipitation. In: de Jong K (ed) Synthesis of solid catalysts. Wiley-VCH, Weinheim, pp 135–151
69.
Zurück zum Zitat Kniep BL, Girgsdies F, Ressler T (2005) Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming. J Catal 236:34–44 Kniep BL, Girgsdies F, Ressler T (2005) Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming. J Catal 236:34–44
70.
Zurück zum Zitat Millar GJ, Holm IH, Uwins PJR, Drennan J (1998) Characterization of precursors to methanol synthesis catalysts Cu/ZnO system. J Chem Soc Faraday Trans 94:593–600 Millar GJ, Holm IH, Uwins PJR, Drennan J (1998) Characterization of precursors to methanol synthesis catalysts Cu/ZnO system. J Chem Soc Faraday Trans 94:593–600
71.
Zurück zum Zitat Behrens M, Girgsdies F, Trunschke A, Schlögl R (2009) Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (Zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem 10:1347–1357 Behrens M, Girgsdies F, Trunschke A, Schlögl R (2009) Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (Zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem 10:1347–1357
72.
Zurück zum Zitat Fujita S, Satriyo AM, Shen GC, Takezawa N (1995) Mechanism of the formation of precursors for the Cu/ZnO methanol synthesis catalysts by a coprecipitation method. Catal Lett 34:85–92 Fujita S, Satriyo AM, Shen GC, Takezawa N (1995) Mechanism of the formation of precursors for the Cu/ZnO methanol synthesis catalysts by a coprecipitation method. Catal Lett 34:85–92
73.
Zurück zum Zitat Behrens M, Girgsdies F (2010) Structural effects of Cu/Zn substitution in the malachite-rosasite system. Z Anorg Allg Chem 636:919–927 Behrens M, Girgsdies F (2010) Structural effects of Cu/Zn substitution in the malachite-rosasite system. Z Anorg Allg Chem 636:919–927
74.
Zurück zum Zitat Shen GC, Fujita S, Matsumoto S, Takezawa N (1997) Steam reforming of methanol on binary Cu/ZnO catalysts: effects of preparation condition upon precursors, surface structure and catalytic activity. J Mol Catal A 124:123–136 Shen GC, Fujita S, Matsumoto S, Takezawa N (1997) Steam reforming of methanol on binary Cu/ZnO catalysts: effects of preparation condition upon precursors, surface structure and catalytic activity. J Mol Catal A 124:123–136
75.
Zurück zum Zitat Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K (2004) Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Appl Catal A 263:249–253 Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K (2004) Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Appl Catal A 263:249–253
76.
Zurück zum Zitat Shishido T, Yamamoto Y, Morioka H, Takehira K (2007) Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming. J Mol Catal A 268:185–194 Shishido T, Yamamoto Y, Morioka H, Takehira K (2007) Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming. J Mol Catal A 268:185–194
77.
Zurück zum Zitat Zhang XR, Wang LC, Yao CZ, Cao Y, Dai WL, He HY, Fan KN (2005) A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol. Catal Lett 102:183–190 Zhang XR, Wang LC, Yao CZ, Cao Y, Dai WL, He HY, Fan KN (2005) A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol. Catal Lett 102:183–190
78.
Zurück zum Zitat Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN (2007) Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. J Catal 246:193–204 Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN (2007) Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. J Catal 246:193–204
79.
Zurück zum Zitat Becker M, Naumann d’Alnoncourt R, Kähler K, Sekulic J, Fischer RA, Muhler M (2010) The synthesis of highly loaded Cu/Al2O3 and Cu/ZnO/Al2O3 catalysts by the two-step CVD of Cu(II)diethylamino-2-propoxide in a fluidized-bed reactor. Chem Vap Deposition 16:85 Becker M, Naumann d’Alnoncourt R, Kähler K, Sekulic J, Fischer RA, Muhler M (2010) The synthesis of highly loaded Cu/Al2O3 and Cu/ZnO/Al2O3 catalysts by the two-step CVD of Cu(II)diethylamino-2-propoxide in a fluidized-bed reactor. Chem Vap Deposition 16:85
80.
Zurück zum Zitat Kurtz M, Bauer N, Büscher C, Wilmer H, Hinrichsen O, Becker R, Rabe S, Merz K, Driess M, Fischer RA, Muhler M (2004) New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis. Catal Lett 92:49–52 Kurtz M, Bauer N, Büscher C, Wilmer H, Hinrichsen O, Becker R, Rabe S, Merz K, Driess M, Fischer RA, Muhler M (2004) New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis. Catal Lett 92:49–52
81.
Zurück zum Zitat Omata K, Hashimoto M, Wanatabe Y, Umegaki T, Wagatsuma S, Ishiguro G, Yamada M (2004) Optimization of Cu oxide catalyst for methanol synthesis under high CO2 partial pressure using combinatorial tools. Appl Catal A 262:207–214 Omata K, Hashimoto M, Wanatabe Y, Umegaki T, Wagatsuma S, Ishiguro G, Yamada M (2004) Optimization of Cu oxide catalyst for methanol synthesis under high CO2 partial pressure using combinatorial tools. Appl Catal A 262:207–214
82.
Zurück zum Zitat Breen JP, Ross JRH (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts. Catal Today 51:521–533 Breen JP, Ross JRH (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts. Catal Today 51:521–533
83.
Zurück zum Zitat Matsumura Y, Ishibe H (2009) Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst. J Catal 268:282–289 Matsumura Y, Ishibe H (2009) Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst. J Catal 268:282–289
84.
Zurück zum Zitat Yang HM, Liao PH (2007) Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol. Appl Catal A 317:226–233 Yang HM, Liao PH (2007) Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol. Appl Catal A 317:226–233
85.
Zurück zum Zitat Kudo S, Maki T, Miura K, Mae K (2010) High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether. Carbon 48:1186–1195 Kudo S, Maki T, Miura K, Mae K (2010) High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether. Carbon 48:1186–1195
86.
Zurück zum Zitat Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301 Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301
87.
Zurück zum Zitat Takehira K, Shishido T (2007) Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”. Catal Surv Asia 11:1–30 Takehira K, Shishido T (2007) Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”. Catal Surv Asia 11:1–30
88.
Zurück zum Zitat Tang Y, Liu Y, Zhu P, Xue Q, Chen L, Lu Y (2009) High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming. Am Inst Chem Eng J 55:1217–1228 Tang Y, Liu Y, Zhu P, Xue Q, Chen L, Lu Y (2009) High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming. Am Inst Chem Eng J 55:1217–1228
89.
Zurück zum Zitat Busca G, Constatino U, Marmottini F, Montanari T, Patrono P, Pinari F, Ramis G (2006) Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts. Appl Catal A 310:70–78 Busca G, Constatino U, Marmottini F, Montanari T, Patrono P, Pinari F, Ramis G (2006) Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts. Appl Catal A 310:70–78
90.
Zurück zum Zitat Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts. Chem Mater 22:386–397 Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts. Chem Mater 22:386–397
91.
Zurück zum Zitat Kühl S, Friedrich M, Armbrüster M, Behrens M, unpublished Kühl S, Friedrich M, Armbrüster M, Behrens M, unpublished
92.
Zurück zum Zitat Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) Production of hydrogen from oxidative steam reforming of methanol - I. preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. J Catal 228:43–55 Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) Production of hydrogen from oxidative steam reforming of methanol - I. preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. J Catal 228:43–55
93.
Zurück zum Zitat Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M (2007) Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Appl Catal B 77:46–57 Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M (2007) Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Appl Catal B 77:46–57
94.
Zurück zum Zitat Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation. J Catal 194:373–384 Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation. J Catal 194:373–384
95.
Zurück zum Zitat Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T (2001) Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Appl Catal A 213:47–63 Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T (2001) Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Appl Catal A 213:47–63
96.
Zurück zum Zitat Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T (2002) XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys Chem Chem Phys 4:1990–1999 Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T (2002) XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys Chem Chem Phys 4:1990–1999
97.
Zurück zum Zitat Matsumura Y, Ishibe H (2009) High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts. Appl Catal B 91:524–532 Matsumura Y, Ishibe H (2009) High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts. Appl Catal B 91:524–532
98.
Zurück zum Zitat Jones SD, Hagelin-Weaver HE (2009) Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B 90:195–204 Jones SD, Hagelin-Weaver HE (2009) Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B 90:195–204
99.
Zurück zum Zitat Idem RO, Bakhshi NN (1996) Characterization studies of calcined, promoted and non-promoted methanol-steam reforming catalysts. Can J Chem Eng 74:288–300 Idem RO, Bakhshi NN (1996) Characterization studies of calcined, promoted and non-promoted methanol-steam reforming catalysts. Can J Chem Eng 74:288–300
100.
Zurück zum Zitat Lindström B, Pettersson LJ (2001) Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. Int J Hydrogen Energy 26:923–933 Lindström B, Pettersson LJ (2001) Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. Int J Hydrogen Energy 26:923–933
101.
Zurück zum Zitat Lindström B, Pettersson LJ, Menon PG (2002) Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on gamma-alumina for methanol reforming for fuel cell vehicles. Appl Catal 234:111–125 Lindström B, Pettersson LJ, Menon PG (2002) Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on gamma-alumina for methanol reforming for fuel cell vehicles. Appl Catal 234:111–125
102.
Zurück zum Zitat Matsumura Y, Ishibe H (2009) Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method. Appl Catal B 86:114–120 Matsumura Y, Ishibe H (2009) Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method. Appl Catal B 86:114–120
103.
Zurück zum Zitat Kobayashi H, Takezawa N, Shimokawabe M, Takahashi K (1983) Preparation Of copper supported on metal oxides and methanol steam reforming reaction. Stud Surf Sci Catal 16:697–707 Kobayashi H, Takezawa N, Shimokawabe M, Takahashi K (1983) Preparation Of copper supported on metal oxides and methanol steam reforming reaction. Stud Surf Sci Catal 16:697–707
104.
Zurück zum Zitat Takezawa N, Shimokawabe M, Hiramatsu H, Sugiura H, Asakawa T, Kobayashi H (1987) Steam reforming of methanol over Cu/ZrO2—role of ZrO2 support. React Kinet Catal Lett 33:191–196 Takezawa N, Shimokawabe M, Hiramatsu H, Sugiura H, Asakawa T, Kobayashi H (1987) Steam reforming of methanol over Cu/ZrO2—role of ZrO2 support. React Kinet Catal Lett 33:191–196
105.
Zurück zum Zitat Szizybalski A, Girgsdies F, Rabis A, Wang Y, Niederberger M, Ressler T (2005) In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. J Catal 233:297–307 Szizybalski A, Girgsdies F, Rabis A, Wang Y, Niederberger M, Ressler T (2005) In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. J Catal 233:297–307
106.
Zurück zum Zitat Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl Catal A 293:64–70 Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl Catal A 293:64–70
107.
Zurück zum Zitat Yao C, Wang L, Liu Y, Wu G, Cao Y, Dai W, He H, Fan K (2006) Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A 297:151–158 Yao C, Wang L, Liu Y, Wu G, Cao Y, Dai W, He H, Fan K (2006) Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A 297:151–158
108.
Zurück zum Zitat Wang LC, Liu Q, Chen M, Liu YM, Cao Y, He HY, Fan KN (2007) Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique. J Phys Chem C 111:16549–16557 Wang LC, Liu Q, Chen M, Liu YM, Cao Y, He HY, Fan KN (2007) Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique. J Phys Chem C 111:16549–16557
109.
Zurück zum Zitat Wu GS, Mao DS, Lu GZ, Cao Y, Fan KN (2009) The role of the promoters in Cu based catalysts for methanol steam reforming. Catal Lett 130:177–184 Wu GS, Mao DS, Lu GZ, Cao Y, Fan KN (2009) The role of the promoters in Cu based catalysts for methanol steam reforming. Catal Lett 130:177–184
110.
Zurück zum Zitat Liu Y, Hayakawa T, Suzuki K, Hamakawa S (2001) Production of hydrogen by steam reforming of methanol over Cu/CeO2 catalysts derived from Ce1−x Cu x O2−x precursors. Catal Comm 2:195–200 Liu Y, Hayakawa T, Suzuki K, Hamakawa S (2001) Production of hydrogen by steam reforming of methanol over Cu/CeO2 catalysts derived from Ce1−x Cu x O2−x precursors. Catal Comm 2:195–200
111.
Zurück zum Zitat Liu Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murato K, Shiozaki R, Ishii T, Kumagai M (2003) Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top Catal 22:205–213 Liu Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murato K, Shiozaki R, Ishii T, Kumagai M (2003) Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top Catal 22:205–213
112.
Zurück zum Zitat Mastalir A, Frank B, Szizybalski A, Soerijanto H, Deshpande A, Niederberger M, Schomäker R, Schlögl R, Ressler T (2005) Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study. J Catal 230:464–475 Mastalir A, Frank B, Szizybalski A, Soerijanto H, Deshpande A, Niederberger M, Schomäker R, Schlögl R, Ressler T (2005) Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study. J Catal 230:464–475
113.
Zurück zum Zitat Oguchi H, Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Appl Catal A 281:69–73 Oguchi H, Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Appl Catal A 281:69–73
114.
Zurück zum Zitat Huang TJ, Chen HM (2010) Hydrogen production via steam reforming of methanol over Cu/(Ce, Gd)O2−x catalysts. Int J Hydrogen Energy 35:6218–6226 Huang TJ, Chen HM (2010) Hydrogen production via steam reforming of methanol over Cu/(Ce, Gd)O2−x catalysts. Int J Hydrogen Energy 35:6218–6226
115.
Zurück zum Zitat Bhagwat M, Ramaswamy AV, Tyagi AK, Ramaswamy V (2003) Rietveld refinement study of nanocrystalline copper doped zirconia. Mater Res Bull 38:1713–1724 Bhagwat M, Ramaswamy AV, Tyagi AK, Ramaswamy V (2003) Rietveld refinement study of nanocrystalline copper doped zirconia. Mater Res Bull 38:1713–1724
116.
Zurück zum Zitat Fierro G, Lo Jacono M, Inversi M, Porta P, Cioci F, Lavecchia R (1996) Study of the reducibility of copper in CuO–-ZnO catalysts by temperature-programmed reduction. Appl Catal A 137:327–348 Fierro G, Lo Jacono M, Inversi M, Porta P, Cioci F, Lavecchia R (1996) Study of the reducibility of copper in CuO–-ZnO catalysts by temperature-programmed reduction. Appl Catal A 137:327–348
117.
Zurück zum Zitat Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092–7097 Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092–7097
118.
Zurück zum Zitat Günther MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy. J Catal 203:133–149 Günther MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy. J Catal 203:133–149
119.
Zurück zum Zitat Goddby BE, Pemberton JE (1988) XPS characterization of a commercial Cu/ZnO/Al2O3 catalyst: effects of oxidation, reduction, and the steam reformation of methanol. Appl Spectrosc 42:754–760 Goddby BE, Pemberton JE (1988) XPS characterization of a commercial Cu/ZnO/Al2O3 catalyst: effects of oxidation, reduction, and the steam reformation of methanol. Appl Spectrosc 42:754–760
120.
Zurück zum Zitat Raimondi F, Geissler K, Wambach J, Wokaun A (2002) Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Appl Surf Sci 189:59–71 Raimondi F, Geissler K, Wambach J, Wokaun A (2002) Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Appl Surf Sci 189:59–71
121.
Zurück zum Zitat Raimondi F, Schnyder B, Kötz R, Schelldorfer R, Jung T, Wambach J, Wokaun A (2003) Structural changes of model Cu/ZnO catalysts during exposure to methanol reforming conditions. Surf Sci 532–535:383–389 Raimondi F, Schnyder B, Kötz R, Schelldorfer R, Jung T, Wambach J, Wokaun A (2003) Structural changes of model Cu/ZnO catalysts during exposure to methanol reforming conditions. Surf Sci 532–535:383–389
122.
Zurück zum Zitat Reitz TL, Lee PL, Czaplewski KF, Lang JC, Popp KE, Kung HH (2001) Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. J Catal 199:193–201 Reitz TL, Lee PL, Czaplewski KF, Lang JC, Popp KE, Kung HH (2001) Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. J Catal 199:193–201
123.
Zurück zum Zitat Knop-Gericke A, Hävecker M, Schedel-Niedrig T, Schlögl R (2001) Characterisation of active phases of a copper catalyst for methanol oxidation under reaction conditions: an in situ X-ray absorption spectroscopy study in the soft energy range. Top Catal 15:27–34 Knop-Gericke A, Hävecker M, Schedel-Niedrig T, Schlögl R (2001) Characterisation of active phases of a copper catalyst for methanol oxidation under reaction conditions: an in situ X-ray absorption spectroscopy study in the soft energy range. Top Catal 15:27–34
124.
Zurück zum Zitat Klier K (1982) Methanol synthesis. Adv Catal 31:243–313 Klier K (1982) Methanol synthesis. Adv Catal 31:243–313
125.
Zurück zum Zitat Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, Turco M, Bagnsco G (2005) Cu-Zn-Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol. Solid State Ionics 176:2917–2922 Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, Turco M, Bagnsco G (2005) Cu-Zn-Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol. Solid State Ionics 176:2917–2922
126.
Zurück zum Zitat Larrubia Vargas MA, Busca G, Costantino U, Marmottini F, Montatnari T, Patrono P, Pinzari F, Ramis G (2007) An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts. J Mol Catal A 266:188–197 Larrubia Vargas MA, Busca G, Costantino U, Marmottini F, Montatnari T, Patrono P, Pinzari F, Ramis G (2007) An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts. J Mol Catal A 266:188–197
127.
Zurück zum Zitat Busca G, Montanari T, Resini C, Ramis G, Costantino U (2009) Hydrogen from alcohols: IR and flow reactor studies. Catal Today 143:2–8 Busca G, Montanari T, Resini C, Ramis G, Costantino U (2009) Hydrogen from alcohols: IR and flow reactor studies. Catal Today 143:2–8
128.
Zurück zum Zitat Sakong S, Groß A (2003) Dissociative adsorption of hydrogen on strained Cu surfaces. Surf Sci 525:107–118 Sakong S, Groß A (2003) Dissociative adsorption of hydrogen on strained Cu surfaces. Surf Sci 525:107–118
129.
Zurück zum Zitat Girgsdies F, Ressler T, Wild U, Wübben T, Balk TJ, Dehm G, Zhou L, Günther S, Arzt E, Imbihl R, Schlögl R (2005) Strained thin copper films as model catalysts in the materials gap. Catal Lett 102:91–97 Girgsdies F, Ressler T, Wild U, Wübben T, Balk TJ, Dehm G, Zhou L, Günther S, Arzt E, Imbihl R, Schlögl R (2005) Strained thin copper films as model catalysts in the materials gap. Catal Lett 102:91–97
130.
Zurück zum Zitat Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220 Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220
131.
Zurück zum Zitat Frost JC (1988) Junction effect interactions in methanol synthesis catalysts. Nature 334:577–580 Frost JC (1988) Junction effect interactions in methanol synthesis catalysts. Nature 334:577–580
132.
Zurück zum Zitat Zhang XR, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2005) A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol. Chem Commun 4104–4106 Zhang XR, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2005) A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol. Chem Commun 4104–4106
133.
Zurück zum Zitat Holladay JD, Wang Y, Jones E (2004) Review of developments in portable hydrogen production using microreactor technology. Chem Rev 104:4767–4790 Holladay JD, Wang Y, Jones E (2004) Review of developments in portable hydrogen production using microreactor technology. Chem Rev 104:4767–4790
134.
Zurück zum Zitat Kovnir K, Armbrüster M, Teschner D, Venkov TV, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2007) A new approach to well-defined, stable and site-isolated catalysts. Sci Tech Adv Mater 8:420–427 Kovnir K, Armbrüster M, Teschner D, Venkov TV, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2007) A new approach to well-defined, stable and site-isolated catalysts. Sci Tech Adv Mater 8:420–427
135.
Zurück zum Zitat Kohlmann H (2002) Metal hydrides. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 9, 3rd edn. Academic, New York, pp 441–458 Kohlmann H (2002) Metal hydrides. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 9, 3rd edn. Academic, New York, pp 441–458
136.
Zurück zum Zitat Friedrich M, Ormeci A, Grin Yu, Armbrüster M (2010) PdZn or ZnPd: charge transfer and Pd–Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure. Z Anorg Allg Chem 636:1735–1739 Friedrich M, Ormeci A, Grin Yu, Armbrüster M (2010) PdZn or ZnPd: charge transfer and Pd–Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure. Z Anorg Allg Chem 636:1735–1739
137.
Zurück zum Zitat Armbrüster M, Schnelle W, Schwarz U, Grin Yu (2007) Chemical bonding in TiSb2 and VSb2: a quantum chemical and experimental study. Inorg Chem 46:6319–6328 Armbrüster M, Schnelle W, Schwarz U, Grin Yu (2007) Chemical bonding in TiSb2 and VSb2: a quantum chemical and experimental study. Inorg Chem 46:6319–6328
138.
Zurück zum Zitat Armbrüster M, Schnelle W, Cardoso-Gil R, Grin Yu (2010) Chemical bonding in the isostructural compounds MnSn2, FeSn2 and CoSn2. Chem Eur J 16:10357–10365 Armbrüster M, Schnelle W, Cardoso-Gil R, Grin Yu (2010) Chemical bonding in the isostructural compounds MnSn2, FeSn2 and CoSn2. Chem Eur J 16:10357–10365
139.
Zurück zum Zitat Grin Yu, Wagner FR, Armbrüster M, Kohout M, Leithe-Jasper A, Schwarz U, Wedig U, von Schnering HG (2006) CuAl2 revisisted: composition, crystal structure, chemical bonding compressibility and Raman spectroscopy. J Solid State Chem 179:1707–1719 Grin Yu, Wagner FR, Armbrüster M, Kohout M, Leithe-Jasper A, Schwarz U, Wedig U, von Schnering HG (2006) CuAl2 revisisted: composition, crystal structure, chemical bonding compressibility and Raman spectroscopy. J Solid State Chem 179:1707–1719
140.
Zurück zum Zitat Macchioni C, Rayne JA, Sen S, Bauer CL (1981) Low temperature resistivity of thin film and bulk samples of CuAl2 and Cu9Al4. Thin Solid Films 81:71–78 Macchioni C, Rayne JA, Sen S, Bauer CL (1981) Low temperature resistivity of thin film and bulk samples of CuAl2 and Cu9Al4. Thin Solid Films 81:71–78
141.
Zurück zum Zitat Iwasa N, Masuda S, Ogawa N, Takezawa N (1995) Steam reforming of methanol over Pd/ZnO: effects of the formation of PdZn alloys upon the reaction. Appl Catal A 125:145–157 Iwasa N, Masuda S, Ogawa N, Takezawa N (1995) Steam reforming of methanol over Pd/ZnO: effects of the formation of PdZn alloys upon the reaction. Appl Catal A 125:145–157
142.
Zurück zum Zitat Miyao K, Onodera H, Takezawa N (1994) Highly active copper catalysts for steam reforming of methanol Catalysts Derived from Cu/Zn/Al Alloys. React Kinet Catal Lett 53:379–383 Miyao K, Onodera H, Takezawa N (1994) Highly active copper catalysts for steam reforming of methanol Catalysts Derived from Cu/Zn/Al Alloys. React Kinet Catal Lett 53:379–383
143.
Zurück zum Zitat Kameoka S, Tanabe T, Tsai AP (2004) Al-Cu-Fe quasicrystals for steam reforming of methanol: a new form of copper catalyst. Catal Today 93–95:23–26 Kameoka S, Tanabe T, Tsai AP (2004) Al-Cu-Fe quasicrystals for steam reforming of methanol: a new form of copper catalyst. Catal Today 93–95:23–26
144.
Zurück zum Zitat Tanabe T, Kameoka S, Tsai AP (2006) A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol. Catal Today 111:153–157 Tanabe T, Kameoka S, Tsai AP (2006) A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol. Catal Today 111:153–157
145.
Zurück zum Zitat Yoshimura M, Tsai AP (2002) Quasicrystal application on catalyst. J Alloy Comp 342:451–454 Yoshimura M, Tsai AP (2002) Quasicrystal application on catalyst. J Alloy Comp 342:451–454
146.
Zurück zum Zitat Wallace WE, Elattar A, Imamura H, Craig RS, Moldovan AG (1980) Intermetallic compounds: surface chemistry, hydrogen absorption and heterogeneous catalysis. In: Wallace WE, Rao ECS (eds) Science and technology of rare earth materials. Academic, New York, pp 329–351 Wallace WE, Elattar A, Imamura H, Craig RS, Moldovan AG (1980) Intermetallic compounds: surface chemistry, hydrogen absorption and heterogeneous catalysis. In: Wallace WE, Rao ECS (eds) Science and technology of rare earth materials. Academic, New York, pp 329–351
147.
Zurück zum Zitat Nix RM, Rayment T, Lambert RM, Jennings JR, Owen G (1987) An in situ X-Ray diffraction study of the activation and performance of methanol synthesis catalysts derived from rare-earth-copper alloys. J Catal 106:216–234 Nix RM, Rayment T, Lambert RM, Jennings JR, Owen G (1987) An in situ X-Ray diffraction study of the activation and performance of methanol synthesis catalysts derived from rare-earth-copper alloys. J Catal 106:216–234
148.
Zurück zum Zitat Takahashi T, Kawabata M, Kai T, Kimura H, Inoue A (2006) Preparation of highly active methanol steam reforming catalysts from glassy Cu-Zr Alloys with small amount of noble metals. Mater Trans 47:2081–2085 Takahashi T, Kawabata M, Kai T, Kimura H, Inoue A (2006) Preparation of highly active methanol steam reforming catalysts from glassy Cu-Zr Alloys with small amount of noble metals. Mater Trans 47:2081–2085
149.
Zurück zum Zitat Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Omil JAP, Pintado JM (2003) Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect. Catal Today 77:385–406 Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Omil JAP, Pintado JM (2003) Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect. Catal Today 77:385–406
150.
Zurück zum Zitat Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175 Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175
151.
Zurück zum Zitat Knözinger H, Taglauer E (2008) Spreading and wetting. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 555–571 Knözinger H, Taglauer E (2008) Spreading and wetting. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 555–571
152.
Zurück zum Zitat Simoens AJ, Baker RTK, Dwyer DJ, Lund CRF, Madon RJ (1984) A study of the nickel-titanium oxide interaction. J Catal 86:359–372 Simoens AJ, Baker RTK, Dwyer DJ, Lund CRF, Madon RJ (1984) A study of the nickel-titanium oxide interaction. J Catal 86:359–372
153.
Zurück zum Zitat Centi G (2003) Metal-support interactions. In: Cornils B, Herrmann WA, Schlögl R, Wong CH (eds) Catalysis from A to Z, 2nd edn. Wiley-VCH, Weinheim, pp 490–491 Centi G (2003) Metal-support interactions. In: Cornils B, Herrmann WA, Schlögl R, Wong CH (eds) Catalysis from A to Z, 2nd edn. Wiley-VCH, Weinheim, pp 490–491
154.
Zurück zum Zitat Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394 Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394
155.
Zurück zum Zitat Penner S, Wang D, Su DS, Rupprechter G, Podloucky R, Schlögl R, Hayek K (2003) Platinum nanocrystals supported by silica, ceria and alumina: metal-support interactions due to high-temperature reduction in hydrogen. Surf Sci 532–535:276 Penner S, Wang D, Su DS, Rupprechter G, Podloucky R, Schlögl R, Hayek K (2003) Platinum nanocrystals supported by silica, ceria and alumina: metal-support interactions due to high-temperature reduction in hydrogen. Surf Sci 532–535:276
156.
Zurück zum Zitat Penner S, Wang D, Podloucky R, Schlögl R, Hayek K (2004) Rh and Pt nanoparticles supported by CeO2: metal-support interaction upon high-temperature reduction observed by electron microscopy. Phys Chem Chem Phys 6:5244 Penner S, Wang D, Podloucky R, Schlögl R, Hayek K (2004) Rh and Pt nanoparticles supported by CeO2: metal-support interaction upon high-temperature reduction observed by electron microscopy. Phys Chem Chem Phys 6:5244
157.
Zurück zum Zitat Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211–216 Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211–216
158.
Zurück zum Zitat Wang Y, Zhang J, Xu H (2006) Interaction between Pd and ZnO during reduction of Pd/ZnO catalyst for steam reforming of methanol to hydrogen. Chin J Catal 27:217–222 Wang Y, Zhang J, Xu H (2006) Interaction between Pd and ZnO during reduction of Pd/ZnO catalyst for steam reforming of methanol to hydrogen. Chin J Catal 27:217–222
159.
Zurück zum Zitat Wang Y, Zhang J, Xu H, Bai X (2007) Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol. Chin J Catal 28:234–238 Wang Y, Zhang J, Xu H, Bai X (2007) Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol. Chin J Catal 28:234–238
160.
Zurück zum Zitat Penner S, Jenewein B, Gabasch H, Klötzer B, Wang D, Knop-Gericke A, Schlögl R, Hayek K (2006) Growth and structural stability of well-ordered PdZn alloy nanoparticles. J Catal 241:14–19 Penner S, Jenewein B, Gabasch H, Klötzer B, Wang D, Knop-Gericke A, Schlögl R, Hayek K (2006) Growth and structural stability of well-ordered PdZn alloy nanoparticles. J Catal 241:14–19
161.
Zurück zum Zitat Clark JB, Hastie JW, Kihlborg LHE, Metselaar R, Thackeray MM (1994) Definitions of terms relating to phase transitions of the solid state. Pure Appl Chem 66:577–594 Clark JB, Hastie JW, Kihlborg LHE, Metselaar R, Thackeray MM (1994) Definitions of terms relating to phase transitions of the solid state. Pure Appl Chem 66:577–594
162.
Zurück zum Zitat Dagle RA, Chin YH, Wang Y (2007) The effects of PdZn crystallite size on methanol steam reforming. Top Catal 46:358–362 Dagle RA, Chin YH, Wang Y (2007) The effects of PdZn crystallite size on methanol steam reforming. Top Catal 46:358–362
163.
Zurück zum Zitat Karim A, Conant T, Datye A (2006) The Role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J Catal 243:420–427 Karim A, Conant T, Datye A (2006) The Role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J Catal 243:420–427
164.
Zurück zum Zitat Lebarbier V, Dagle R, Datye A, Wang Y (2010) The effect of PdZn particle size on reverse-water-gas-shift reaction. Appl Catal A 379:3–6 Lebarbier V, Dagle R, Datye A, Wang Y (2010) The effect of PdZn particle size on reverse-water-gas-shift reaction. Appl Catal A 379:3–6
165.
Zurück zum Zitat Bollmann L, Ratts JL, Joshi AM, Williams WD, Pazmino J, Joshi YV, Miller JT, Kropf AJ, Delgass WN, Ribeiro FH (2008) Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts. J Catal 257:43–54 Bollmann L, Ratts JL, Joshi AM, Williams WD, Pazmino J, Joshi YV, Miller JT, Kropf AJ, Delgass WN, Ribeiro FH (2008) Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts. J Catal 257:43–54
166.
Zurück zum Zitat Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K (2004) Comparative study between Zn-Pd/C and Pd/ZnO Catalysts for steam reforming of methanol. Appl Catal A 267:9–16 Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K (2004) Comparative study between Zn-Pd/C and Pd/ZnO Catalysts for steam reforming of methanol. Appl Catal A 267:9–16
167.
Zurück zum Zitat Liu S, Takahashi K, Eguchi H, Uematsu K (2007) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst preparation and supporting materials. Catal Today 129:287–292 Liu S, Takahashi K, Eguchi H, Uematsu K (2007) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst preparation and supporting materials. Catal Today 129:287–292
168.
Zurück zum Zitat Liu S, Takahashi K, Uematsu K, Ayabe M (2005) Hydrogen production by oxidative methanol reforming on Pd/ZnO. Appl Catal A 283:125–135 Liu S, Takahashi K, Uematsu K, Ayabe M (2005) Hydrogen production by oxidative methanol reforming on Pd/ZnO. Appl Catal A 283:125–135
169.
Zurück zum Zitat Liu S, Takahashi K, Ayabe M (2003) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effect of Pd loading. Catal Today 87:247–253 Liu S, Takahashi K, Ayabe M (2003) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effect of Pd loading. Catal Today 87:247–253
170.
Zurück zum Zitat Liu S, Takajashi K, Fuchigami K, Uematsu K (2006) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst deactivation. Appl Catal A 299:58–65 Liu S, Takajashi K, Fuchigami K, Uematsu K (2006) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst deactivation. Appl Catal A 299:58–65
171.
Zurück zum Zitat Liu S, Takahashi K, Uematsu K, Ayabe M (2004) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component. Appl Catal A 277:265–270 Liu S, Takahashi K, Uematsu K, Ayabe M (2004) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component. Appl Catal A 277:265–270
172.
Zurück zum Zitat Lenarda M, Storaro L, Frattini R, Casagrande M, Marchiori M, Capannelli G, Uliana C, Ferrari F, Ganzerla R (2007) Oxidative methanol steam reforming (OSRM) on a PdZnAl hydrotalcite derived catalyst. Catal Comm 8:467–470 Lenarda M, Storaro L, Frattini R, Casagrande M, Marchiori M, Capannelli G, Uliana C, Ferrari F, Ganzerla R (2007) Oxidative methanol steam reforming (OSRM) on a PdZnAl hydrotalcite derived catalyst. Catal Comm 8:467–470
173.
Zurück zum Zitat Cubeiro ML, Fierro JLG (1998) Partial oxidation of methanol over supported palladium catalysts. Appl Catal A 168:307–322 Cubeiro ML, Fierro JLG (1998) Partial oxidation of methanol over supported palladium catalysts. Appl Catal A 168:307–322
174.
Zurück zum Zitat Cubeiro ML, Fierro JLG (1998) Selective production of hydrogen by partial oxidation of methanol over ZnO-Supported palladium catalysts. J Catal 179:150–162 Cubeiro ML, Fierro JLG (1998) Selective production of hydrogen by partial oxidation of methanol over ZnO-Supported palladium catalysts. J Catal 179:150–162
175.
Zurück zum Zitat Agrell J, Germani G, Järås SG, Boutonnet M (2003) Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl Catal A 242:233–245 Agrell J, Germani G, Järås SG, Boutonnet M (2003) Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl Catal A 242:233–245
176.
Zurück zum Zitat Eastman JA, Thompson LJ, Kestel BJ (1993) Narrowing the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys Rev B 48:84–92 Eastman JA, Thompson LJ, Kestel BJ (1993) Narrowing the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys Rev B 48:84–92
177.
Zurück zum Zitat Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299 Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299
178.
Zurück zum Zitat Tew MW, Miller JT, van Bokhoven JA (2009) Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 Edge vs K Edge X-Ray absorption spectroscopy. J Phys Chem C 113:15140–15147 Tew MW, Miller JT, van Bokhoven JA (2009) Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 Edge vs K Edge X-Ray absorption spectroscopy. J Phys Chem C 113:15140–15147
179.
Zurück zum Zitat Ito SI, Suwa Y, Kondo S, Kamoeka S, Timishige T, Kunimori K (2003) Steam reforming of methanol over Pt-Zn alloy catalyst supported on carbon black. Catal Comm 4:499–503 Ito SI, Suwa Y, Kondo S, Kamoeka S, Timishige T, Kunimori K (2003) Steam reforming of methanol over Pt-Zn alloy catalyst supported on carbon black. Catal Comm 4:499–503
180.
Zurück zum Zitat Iwasa N, Takezawa N (2003) New Supported Pd and Pt Alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal 22:215–224 Iwasa N, Takezawa N (2003) New Supported Pd and Pt Alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal 22:215–224
181.
Zurück zum Zitat Lim KH, Chen ZX, Neyman KM, Rösch N (2006) Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J Phys Chem B 110:14890–14897 Lim KH, Chen ZX, Neyman KM, Rösch N (2006) Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J Phys Chem B 110:14890–14897
182.
Zurück zum Zitat Lorenz H, Zhao Q, Turner S, Lebedev BL, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Konzett J, Penner S (2010) Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study. Appl Catal A 381:242–252 Lorenz H, Zhao Q, Turner S, Lebedev BL, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Konzett J, Penner S (2010) Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study. Appl Catal A 381:242–252
183.
Zurück zum Zitat Penner S, Lorenz H, Jochum W, Stöger-Pollach M, Wang D, Rameshan C, Klötzer B (2009) Pd/Ga2O3 methanol steam reforming catalysts: part I. Morphology, composition and structural aspects. Appl Catal A 358:193–202 Penner S, Lorenz H, Jochum W, Stöger-Pollach M, Wang D, Rameshan C, Klötzer B (2009) Pd/Ga2O3 methanol steam reforming catalysts: part I. Morphology, composition and structural aspects. Appl Catal A 358:193–202
184.
Zurück zum Zitat Kovnir K, Schmidt M, Waurisch C, Armbrüster M, Prots Yu, Grin Yu (2008) Refinement of the crystal structure of dipalladium gallide, Pd2Ga. Z Kristallogr New Cryst Struct 223:7–8 Kovnir K, Schmidt M, Waurisch C, Armbrüster M, Prots Yu, Grin Yu (2008) Refinement of the crystal structure of dipalladium gallide, Pd2Ga. Z Kristallogr New Cryst Struct 223:7–8
185.
Zurück zum Zitat Lorenz H, Turner S, Lebedev OI, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Penner S (2010) Pd–In2O3 interaction due to reduction in hydrogen: consequences for methanol steam reforming. Appl Catal A 374:180–188 Lorenz H, Turner S, Lebedev OI, Van Tendeloo G, Klötzer B, Rameshan C, Pfaller K, Penner S (2010) Pd–In2O3 interaction due to reduction in hydrogen: consequences for methanol steam reforming. Appl Catal A 374:180–188
186.
Zurück zum Zitat Kamiuchi N, Muroyama H, Matsui T, Kikuchi R, Eguchi K (2010) Nano-structural changes of SnO2-supported palladium catalysts by redox treatments. Appl Catal A 379:148–154 Kamiuchi N, Muroyama H, Matsui T, Kikuchi R, Eguchi K (2010) Nano-structural changes of SnO2-supported palladium catalysts by redox treatments. Appl Catal A 379:148–154
187.
Zurück zum Zitat Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320:86–89 Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320:86–89
188.
Zurück zum Zitat Teschner D, Révay Z, Borsodi J, Hävecker M, Knop-Gericke A, Schlögl R, Milroy D, Jackson SD, Torres D, Sautet P (2008) Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule conrols the nature of the catalyst active phase. Angew Chem Int Ed 47:9274–9278 Teschner D, Révay Z, Borsodi J, Hävecker M, Knop-Gericke A, Schlögl R, Milroy D, Jackson SD, Torres D, Sautet P (2008) Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule conrols the nature of the catalyst active phase. Angew Chem Int Ed 47:9274–9278
189.
Zurück zum Zitat Seriani N, Mittendorfer F, Kresse G (2010) Carbon in palladium catalysts: a metastable carbide. J Chem Phys 132:024711 Seriani N, Mittendorfer F, Kresse G (2010) Carbon in palladium catalysts: a metastable carbide. J Chem Phys 132:024711
190.
Zurück zum Zitat Al Alam AF, Matar SF, Nakhl M, Quaini N (2009) Investigations of changes in crystal and electronic structures by hydrogen within LaNi5 from first-principles. Solid State Sci 11:1098–1106 Al Alam AF, Matar SF, Nakhl M, Quaini N (2009) Investigations of changes in crystal and electronic structures by hydrogen within LaNi5 from first-principles. Solid State Sci 11:1098–1106
191.
Zurück zum Zitat Kohout M (2004) A measure of electron localizability. Int J Quant Chem 97:651–658 Kohout M (2004) A measure of electron localizability. Int J Quant Chem 97:651–658
192.
Zurück zum Zitat Kohout M, Wagner FR, Grin Yu (2006) Atomic shells from the electron localizability in momentum space. Int J Quant Chem 106:1499–1507 Kohout M, Wagner FR, Grin Yu (2006) Atomic shells from the electron localizability in momentum space. Int J Quant Chem 106:1499–1507
193.
Zurück zum Zitat Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54 Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54
194.
Zurück zum Zitat Kovnir K, Armbrüster M, Teschner D, Venkov TV, Szentmiklósi L, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2009) In situ surface characterization of the intermetallic compound pdga—a highly selective hydrogenation catalyst. Surf Sci 603:1784–1792 Kovnir K, Armbrüster M, Teschner D, Venkov TV, Szentmiklósi L, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2009) In situ surface characterization of the intermetallic compound pdga—a highly selective hydrogenation catalyst. Surf Sci 603:1784–1792
195.
Zurück zum Zitat Osswald J, Giedigkeit R, Jentoft RE, Armbrüster M, Girgsdies F, Kovnir K, Grin Yu, Ressler T, Schlögl R (2008) Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part I: preparation and structural investigation under reaction conditions. J Catal 258:210–218 Osswald J, Giedigkeit R, Jentoft RE, Armbrüster M, Girgsdies F, Kovnir K, Grin Yu, Ressler T, Schlögl R (2008) Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part I: preparation and structural investigation under reaction conditions. J Catal 258:210–218
196.
Zurück zum Zitat Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft RE, Wild U, Grin Yu, Schlögl R (2008) Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: surface characterization and catalytic performance. J Catal 258:219–227 Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft RE, Wild U, Grin Yu, Schlögl R (2008) Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: surface characterization and catalytic performance. J Catal 258:219–227
197.
Zurück zum Zitat Chen ZX, Neyman KM, Gordienko AB, Rösch N (2003) Surface structure and stability of PdZn and PtZn alloys: density functional slab model studies. Phys Rev B 68:075417 Chen ZX, Neyman KM, Gordienko AB, Rösch N (2003) Surface structure and stability of PdZn and PtZn alloys: density functional slab model studies. Phys Rev B 68:075417
198.
Zurück zum Zitat Bayer A, Flechtner K, Denecke R, Steinrück HP, Neyman KM, Rösch N (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600:78–94 Bayer A, Flechtner K, Denecke R, Steinrück HP, Neyman KM, Rösch N (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600:78–94
199.
Zurück zum Zitat Chen ZX, Neyman KM, Rösch N (2004) Theoretical study of segregation of Zn and Pd in Pd–Zn alloys. Surf Sci 548:291–300 Chen ZX, Neyman KM, Rösch N (2004) Theoretical study of segregation of Zn and Pd in Pd–Zn alloys. Surf Sci 548:291–300
200.
Zurück zum Zitat Chen ZX, Neyman KM, Lim KH, Rösch N (2004) CH3O Decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Langmuir 20:8068–8077 Chen ZX, Neyman KM, Lim KH, Rösch N (2004) CH3O Decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Langmuir 20:8068–8077
201.
Zurück zum Zitat Chen ZX, Lim KH, Neyman KM, Rösch N (2004) Density functional study of methoxide decomposition on PdZn(100). Phys Chem Chem Phys 6:4499–4504 Chen ZX, Lim KH, Neyman KM, Rösch N (2004) Density functional study of methoxide decomposition on PdZn(100). Phys Chem Chem Phys 6:4499–4504
202.
Zurück zum Zitat Chen ZX, Lim KH, Neyman KM, Rösch N (2005) Effect of steps on the decomposition of CH3O at PdZn alloy surfaces. J Phys Chem B 109:4568–4574 Chen ZX, Lim KH, Neyman KM, Rösch N (2005) Effect of steps on the decomposition of CH3O at PdZn alloy surfaces. J Phys Chem B 109:4568–4574
203.
Zurück zum Zitat Fasana A, Abbati I, Braicovich L (1982) Photoemission evidence of surface segregation at liquid-nitrogen temperature in Zn-Pd system. Phys Rev B 26:4749–4751 Fasana A, Abbati I, Braicovich L (1982) Photoemission evidence of surface segregation at liquid-nitrogen temperature in Zn-Pd system. Phys Rev B 26:4749–4751
204.
Zurück zum Zitat Rodriguez JA (1994) Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J Phys Chem 98:5758–5764 Rodriguez JA (1994) Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J Phys Chem 98:5758–5764
205.
Zurück zum Zitat Stadlmayr W, Penner S, Klötzer B, Memmel N (2009) Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surf Sci 603:251–255 Stadlmayr W, Penner S, Klötzer B, Memmel N (2009) Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surf Sci 603:251–255
206.
Zurück zum Zitat Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B (2010) Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. Angew Chem Int Ed 49:3224–3227 Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B (2010) Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. Angew Chem Int Ed 49:3224–3227
207.
Zurück zum Zitat Stadlmayr W, Rameshan C, Weilach C, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schlögl R, Rupprechter G, Klötzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850–10856 Stadlmayr W, Rameshan C, Weilach C, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schlögl R, Rupprechter G, Klötzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850–10856
208.
Zurück zum Zitat Weirum G, Kratzer M, Koch HP, Tamtögl A, Killmann J, Bako I, Winkler A, Surnev S, Netzer FP, Schennach R (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788–9796 Weirum G, Kratzer M, Koch HP, Tamtögl A, Killmann J, Bako I, Winkler A, Surnev S, Netzer FP, Schennach R (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788–9796
209.
Zurück zum Zitat Koch HP, Bako I, Weirum G, Kratzer M, Schennach R (2010) A Theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surf Sci 604:926–931 Koch HP, Bako I, Weirum G, Kratzer M, Schennach R (2010) A Theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surf Sci 604:926–931
210.
Zurück zum Zitat Gabasch H, Knop-Gericke A, Schlögl R, Penner S, Jenewein B, Hayek K, Klötzer B (2006) Zn adsorption on Pd(111): ZnO and PdZn alloy formation. J Phys Chem B 110:11391–11398 Gabasch H, Knop-Gericke A, Schlögl R, Penner S, Jenewein B, Hayek K, Klötzer B (2006) Zn adsorption on Pd(111): ZnO and PdZn alloy formation. J Phys Chem B 110:11391–11398
211.
Zurück zum Zitat Jeroro E, Vohs JM (2008) Zn Modification of the reactivity of Pd(111) toward methanol and formaldehyde. J Am Chem Soc 130:10199–10207 Jeroro E, Vohs JM (2008) Zn Modification of the reactivity of Pd(111) toward methanol and formaldehyde. J Am Chem Soc 130:10199–10207
212.
Zurück zum Zitat Jeroro E, Lebarbier V, Datye A, Wang Y, Vohs JM (2007) Interaction of CO with surface PdZn alloys. Surf Sci 601:5546–5554 Jeroro E, Lebarbier V, Datye A, Wang Y, Vohs JM (2007) Interaction of CO with surface PdZn alloys. Surf Sci 601:5546–5554
213.
Zurück zum Zitat Massalski TB (1990) Pd-Zn (palladium-zinc). In: Masaalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, pp 3068–3070 Massalski TB (1990) Pd-Zn (palladium-zinc). In: Masaalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, pp 3068–3070
214.
Zurück zum Zitat Iwasa N, Mayanagi T, Masuda S, Takezawa N (2000) Steam reforming of methanol over Pd-Zn catalysts. React Kinet Catal Lett 69:355–360 Iwasa N, Mayanagi T, Masuda S, Takezawa N (2000) Steam reforming of methanol over Pd-Zn catalysts. React Kinet Catal Lett 69:355–360
215.
Zurück zum Zitat Murray JL (1985) The aluminium-copper system. Int Met Rev 30:211–233 Murray JL (1985) The aluminium-copper system. Int Met Rev 30:211–233
Metadaten
Titel
Methanol Steam Reforming
verfasst von
Malte Behrens
Marc Armbrüster
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-0344-9_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.