Skip to main content

2024 | OriginalPaper | Buchkapitel

Method and Processes for Abstraction of Natural Microstructures for New Product Development

verfasst von : Antônio Roberto Miranda de Oliveira, Amilton José Vieira Arruda

Erschienen in: Biomimetics, Biodesign and Bionics

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In nature, we find a myriad of biological structures that serve various functions. For instance, fruit peels act as natural packaging, playing roles in protection, enclosure, transportation, and storage. Over millions of years, diverse cellular arrangements have evolved to achieve high structural efficiency. These structures offer direct and indirect protection against mechanical damage and other negative environmental influences, providing collision resistance, damping, and energy dissipation. Biomimicry is an interdisciplinary approach that combines the study of biology with technology and other innovative disciplines, such as design, to solve technical challenges by analyzing functions and strategies found in biological systems. The aim of this research was to study the natural cellular arrangements found in tropical fruits, with the purpose of abstracting and prototyping a bioinspired structure noninvasively. For the initial exploration, optical microscopy was used to identify the cell types present in the pericarp. With the aid of scanning electron microscopy (SEM) and the cryo-fracture method, it was possible to observe plant morphology and anatomy. Noninvasive structural observation, material analysis, and three-dimensional reconstruction were achieved using X-ray microcomputed tomography (micro-CT) and software, enabling the abstraction of the natural structure. As a result, this study culminated in the three-dimensional prototyping of a bioinspired structure using 3D printing with flexible resin, incorporating visible properties abstracted from the studied biological entity. The abstraction of natural structures, such as those found in tropical fruits, offers a promising path for the development of new materials and products that are not only functionally superior but also in line with sustainability principles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Antreich, S. J., et al. (2019). The puzzle of the walnut shell: A novel cell type with interlocked packing. Advanced Science, 6(16), 1900644.CrossRef Antreich, S. J., et al. (2019). The puzzle of the walnut shell: A novel cell type with interlocked packing. Advanced Science, 6(16), 1900644.CrossRef
6.
Zurück zum Zitat Bührig-Polaczek, A., et al. (2016). Biomimetic cellular metals—Using hierarchical structuring for energy absorption. Bioinspiration & Biomimetics, 11(4), 045002.CrossRef Bührig-Polaczek, A., et al. (2016). Biomimetic cellular metals—Using hierarchical structuring for energy absorption. Bioinspiration & Biomimetics, 11(4), 045002.CrossRef
7.
Zurück zum Zitat Kaupp, G., & Naimi-Jamal, M. R. (2011). Nutshells' mechanical response: From nanoindentation and structure to bionics models. Journal of Materials Chemistry, 21(23), 8389–8400.CrossRef Kaupp, G., & Naimi-Jamal, M. R. (2011). Nutshells' mechanical response: From nanoindentation and structure to bionics models. Journal of Materials Chemistry, 21(23), 8389–8400.CrossRef
8.
Zurück zum Zitat Sonego, M., Fleck, C., & Pessan, L. A. (2020). Hierarchical levels of organization of the Brazil nut mesocarp. Scientific Reports, 10(1), 1–13.CrossRef Sonego, M., Fleck, C., & Pessan, L. A. (2020). Hierarchical levels of organization of the Brazil nut mesocarp. Scientific Reports, 10(1), 1–13.CrossRef
9.
Zurück zum Zitat Grijalva, S. F. (2018). La naturaleza del embalaje: la naturaleza como fuente de innovación para empaques. Caligrama. Grijalva, S. F. (2018). La naturaleza del embalaje: la naturaleza como fuente de innovación para empaques. Caligrama.
10.
Zurück zum Zitat Speck, T., et al. (2018). Biomechanics and functional morphology of plants—Inspiration for biomimetic materials and structures. In Plant biomechanics (pp. 399–433). Springer.CrossRef Speck, T., et al. (2018). Biomechanics and functional morphology of plants—Inspiration for biomimetic materials and structures. In Plant biomechanics (pp. 399–433). Springer.CrossRef
11.
Zurück zum Zitat San Ha, N., et al. (2020). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behavior of Biomedical Materials, 104, 103603.CrossRef San Ha, N., et al. (2020). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behavior of Biomedical Materials, 104, 103603.CrossRef
12.
Zurück zum Zitat Jelinek. (2013). Biomimetics: A molecular perspective. ISBN: 978-3-11-028117-0.CrossRef Jelinek. (2013). Biomimetics: A molecular perspective. ISBN: 978-3-11-028117-0.CrossRef
13.
Zurück zum Zitat Lakhtakia, A., & Martín-Palma, R. J. (Eds.). (2013). Engineered biomimicry. Newnes. Lakhtakia, A., & Martín-Palma, R. J. (Eds.). (2013). Engineered biomimicry. Newnes.
14.
Zurück zum Zitat Ellison, M. S. (2013). Chapter 10: Biomimetic textiles. In Engineered biomimicry. Elsevier. Ellison, M. S. (2013). Chapter 10: Biomimetic textiles. In Engineered biomimicry. Elsevier.
15.
Zurück zum Zitat Fischer, S., Thielen, M., Loprang, R., Seidel, R., Fleck, C., Speck, T., & Bührig-Polaczek, A. (2010). Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Advanced Engineering Materials, 12. https://doi.org/10.1002/adem.201080065 Fischer, S., Thielen, M., Loprang, R., Seidel, R., Fleck, C., Speck, T., & Bührig-Polaczek, A. (2010). Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Advanced Engineering Materials, 12. https://​doi.​org/​10.​1002/​adem.​201080065
21.
Zurück zum Zitat Ambekar, R., Mohanty, I., Kishore, S., Das, R., Pal, V., Kushwaha, B., Roy, A., Kar, S., & Tiwary, C. (2021). Atomic scale structure inspired 3D-printed porous structures with tunable mechanical response. Advanced Engineering Materials, 23. https://doi.org/10.1002/adem.202001428 Ambekar, R., Mohanty, I., Kishore, S., Das, R., Pal, V., Kushwaha, B., Roy, A., Kar, S., & Tiwary, C. (2021). Atomic scale structure inspired 3D-printed porous structures with tunable mechanical response. Advanced Engineering Materials, 23. https://​doi.​org/​10.​1002/​adem.​202001428
33.
Zurück zum Zitat Petkov, V., Ren, Y., Saratovsky, I., Pastén, P., Gurr, S., Hayward, M., Poeppelmeier, K., & Gaillard, J. (2009). Atomic-scale structure of biogenic materials by total X-ray diffraction: A study of bacterial and fungal MnOx. ACS Nano, 3(2), 441–445. https://doi.org/10.1021/nn800653aCrossRef Petkov, V., Ren, Y., Saratovsky, I., Pastén, P., Gurr, S., Hayward, M., Poeppelmeier, K., & Gaillard, J. (2009). Atomic-scale structure of biogenic materials by total X-ray diffraction: A study of bacterial and fungal MnOx. ACS Nano, 3(2), 441–445. https://​doi.​org/​10.​1021/​nn800653aCrossRef
36.
Zurück zum Zitat Arruda, A. J. V. (2002). Bionic Basic: verso un nuovo modello di ricerca progettuale [Tese de Doutorado, Politecnico di Milano–Doutorado em Desenho Industrial e Comunicação Multimídia]. Arruda, A. J. V. (2002). Bionic Basic: verso un nuovo modello di ricerca progettuale [Tese de Doutorado, Politecnico di Milano–Doutorado em Desenho Industrial e Comunicação Multimídia].
38.
Zurück zum Zitat Langella, C., & Santulli, C. (2017). Processi di crescita biologica e Design parametrico. MD Journal, 3(1), 14–27. Langella, C., & Santulli, C. (2017). Processi di crescita biologica e Design parametrico. MD Journal, 3(1), 14–27.
44.
Zurück zum Zitat Rowland, R. (2017). Biomimicry step-by-step. Bioinspired, Biomimetic and Nanobiomaterials, 6(2), 102–112.CrossRef Rowland, R. (2017). Biomimicry step-by-step. Bioinspired, Biomimetic and Nanobiomaterials, 6(2), 102–112.CrossRef
45.
Zurück zum Zitat Conforto, E. C., Amaral, D. C., & da Silva, S. L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. Trabalho apresentado, 8. Conforto, E. C., Amaral, D. C., & da Silva, S. L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. Trabalho apresentado, 8.
46.
Zurück zum Zitat Johansen, D. (1940). Plant microtechnic. Mc Graw Hill Book Company. Johansen, D. (1940). Plant microtechnic. Mc Graw Hill Book Company.
47.
Zurück zum Zitat Kraus, J., & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR. Kraus, J., & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR.
48.
Zurück zum Zitat Ruzin, S. E., et al. (1999). Plant microtechnique and microscopy. Oxford University Press. Ruzin, S. E., et al. (1999). Plant microtechnique and microscopy. Oxford University Press.
49.
Zurück zum Zitat Mauseth, J. D., & Ross, R. G. (1988). Systematic anatomy of the primitive cereoid cactus Leptocereus quadricostatus. Bradleya, 1988(6), 49–64.CrossRef Mauseth, J. D., & Ross, R. G. (1988). Systematic anatomy of the primitive cereoid cactus Leptocereus quadricostatus. Bradleya, 1988(6), 49–64.CrossRef
50.
Zurück zum Zitat Kowaluk, T., & Woźniak, A. (2012). Study of porosity measurement using the computer tomograph. Pomiary Automatyka Robotyka, 16, 82–86. Kowaluk, T., & Woźniak, A. (2012). Study of porosity measurement using the computer tomograph. Pomiary Automatyka Robotyka, 16, 82–86.
Metadaten
Titel
Method and Processes for Abstraction of Natural Microstructures for New Product Development
verfasst von
Antônio Roberto Miranda de Oliveira
Amilton José Vieira Arruda
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51311-4_6