Skip to main content

14.02.2025 | Original Paper

Method for identifying false data injection attacks in power grid based on improved CNN-LSTM

verfasst von: Jie Cao, Qiming Wang, Zhaoyang Qu, Chin-Ling Chen, Yunchang Dong

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In contemporary power systems, the interaction between informational and physical dimensions significantly increases vulnerability to network attacks, particularly false data injection attacks (FDIAs). These attacks are characterized by their stealth and potential for severe disruption, posing a threat to the stability and security of power grid operations. The complexity and high dimensionality of operational data in power systems further exacerbate computational challenges, leading to reduced accuracy in traditional attack detection models. To address these issues, this paper introduces an improved CNN-LSTM approach for FDIA detection in power grids. It incorporates an attention mechanism in the autoencoder structure for refined feature extraction and utilizes a sparrow search algorithm for optimizing model parameters. Evaluational results show over 95% accuracy rate, demonstrating the effectiveness of the proposed method in diverse power grid scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
12.
Zurück zum Zitat Liu S, Mashayekh S, Kundur D et al (2013) A framework for modeling cyber-physical switching attacks in smart grid. IEEE Trans Emerg Top Comput 1(2):273–285CrossRefMATH Liu S, Mashayekh S, Kundur D et al (2013) A framework for modeling cyber-physical switching attacks in smart grid. IEEE Trans Emerg Top Comput 1(2):273–285CrossRefMATH
13.
Zurück zum Zitat Margossian H, Sayed MA, Fawaz W et al (2019) Partial grid false data injection attacks against state estimation. Int J Electr Power Energy Syst 110:623–629CrossRef Margossian H, Sayed MA, Fawaz W et al (2019) Partial grid false data injection attacks against state estimation. Int J Electr Power Energy Syst 110:623–629CrossRef
14.
Zurück zum Zitat Hug G, Giampapa JA (2012) Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks. IEEE Trans Smart Grid 3(3):1362–1370CrossRefMATH Hug G, Giampapa JA (2012) Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks. IEEE Trans Smart Grid 3(3):1362–1370CrossRefMATH
16.
Zurück zum Zitat Xiong S, Li B, Zhu S (2023) DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network. Complex Intell Syst 9(3):3399–3408CrossRefMATH Xiong S, Li B, Zhu S (2023) DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network. Complex Intell Syst 9(3):3399–3408CrossRefMATH
18.
Zurück zum Zitat Xu B, Guo F, Wen C, et al. (2021) Detecting false data injection attacks in smart grids with modeling errors: a deep transfer learning based approach. 2104.06307. 2104.06307v3 Xu B, Guo F, Wen C, et al. (2021) Detecting false data injection attacks in smart grids with modeling errors: a deep transfer learning based approach. 2104.06307. 2104.06307v3
28.
33.
Zurück zum Zitat Wu Y, Wang Q, Guo N et al (2023) Efficient multi-source self-attention data fusion for fdia detection in smart grid. Symmetry 15(5):1019CrossRefMATH Wu Y, Wang Q, Guo N et al (2023) Efficient multi-source self-attention data fusion for fdia detection in smart grid. Symmetry 15(5):1019CrossRefMATH
40.
Zurück zum Zitat Ahmed M, Pathan ASK (2020) False data injection attack (FDIA): an overview and new metrics for fair evaluation of its countermeasure. Complex Adapt Syst Model 8:1–14CrossRefMATH Ahmed M, Pathan ASK (2020) False data injection attack (FDIA): an overview and new metrics for fair evaluation of its countermeasure. Complex Adapt Syst Model 8:1–14CrossRefMATH
41.
Zurück zum Zitat Berahmand K, Daneshfar F, Salehi ES et al (2024) Autoencoders and their applications in machine learning: a survey. Artif Intell Rev 57(2):28CrossRefMATH Berahmand K, Daneshfar F, Salehi ES et al (2024) Autoencoders and their applications in machine learning: a survey. Artif Intell Rev 57(2):28CrossRefMATH
42.
Zurück zum Zitat Pinaya WHL, Vieira S, Garcia-Dias R et al (2020) Autoencoders. Machine learning. Academic Press, Cambridge, pp 193–208CrossRefMATH Pinaya WHL, Vieira S, Garcia-Dias R et al (2020) Autoencoders. Machine learning. Academic Press, Cambridge, pp 193–208CrossRefMATH
43.
Zurück zum Zitat Vaswani A (2017) Attention is all you need. Adv Neural Inf Process Syst Vaswani A (2017) Attention is all you need. Adv Neural Inf Process Syst
44.
Zurück zum Zitat Sharif Razavian A, Azizpour H, Sullivan J, et al. (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 806–813 Sharif Razavian A, Azizpour H, Sullivan J, et al. (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 806–813
45.
Zurück zum Zitat Yu Y, Si X, Hu C et al (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270MathSciNetCrossRefMATH Yu Y, Si X, Hu C et al (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270MathSciNetCrossRefMATH
46.
Zurück zum Zitat Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings, pp 37–49 Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings, pp 37–49
47.
Zurück zum Zitat Nowdeh SA, Davoudkhani IF, Moghaddam MJH et al (2019) Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Appl Soft Comput 77:761–779CrossRef Nowdeh SA, Davoudkhani IF, Moghaddam MJH et al (2019) Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Appl Soft Comput 77:761–779CrossRef
48.
Zurück zum Zitat Jahannoush M, Nowdeh SA (2020) Optimal designing and management of a stand-alone hybrid energy system using meta-heuristic improved sine–cosine algorithm for Recreational Center, case study for Iran country. Appl Soft Comput 96:106611CrossRef Jahannoush M, Nowdeh SA (2020) Optimal designing and management of a stand-alone hybrid energy system using meta-heuristic improved sine–cosine algorithm for Recreational Center, case study for Iran country. Appl Soft Comput 96:106611CrossRef
49.
Zurück zum Zitat Alanazi A, Alanazi M, Nowdeh SA et al (2022) An optimal sizing framework for autonomous photovoltaic/hydrokinetic/hydrogen energy system considering cost, reliability and forced outage rate using horse herd optimization. Energy Rep 8:7154–7175CrossRefMATH Alanazi A, Alanazi M, Nowdeh SA et al (2022) An optimal sizing framework for autonomous photovoltaic/hydrokinetic/hydrogen energy system considering cost, reliability and forced outage rate using horse herd optimization. Energy Rep 8:7154–7175CrossRefMATH
50.
Zurück zum Zitat Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34CrossRefMATH Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34CrossRefMATH
Metadaten
Titel
Method for identifying false data injection attacks in power grid based on improved CNN-LSTM
verfasst von
Jie Cao
Qiming Wang
Zhaoyang Qu
Chin-Ling Chen
Yunchang Dong
Publikationsdatum
14.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02974-3