Noch nie wurden derart gewaltige Datenmengen produziert wie in jüngster Zeit. Daraus erwächst die Erwartung, dass sich in den Peta- und Exabyte an Daten interessante Informationen finden lassen, wenn es nur gelingt, dieses gewaltige Volumen zielgerichtet auszuwerten. Sowohl in der Wissenschaft als auch zunehmend in der Praxis werden daher Verfahren und Technologien diskutiert, die interessante Muster in umfangreichen Datenbeständen aufdecken und Prognosen über zukünftige Ereignisse und Gegebenheiten anstellen können. Zahlreiche der hierfür verwendeten Methoden sind unter dem Begriffsgebilde Data Mining bereits seit langer Zeit bekannt, wurden jedoch im Laufe der Jahre ausgebaut und verfeinert. Der vorliegende Beitrag setzt sich das Ziel, die wesentlichen Verfahren zur Datenanalyse im Überblick zu präsentieren und dabei auf die grundlegenden Vorgehensweisen sowie potenzielle Einsatzbereiche einzugehen.
Anzeige
Bitte loggen Sie sich ein, um Zugang zu Ihrer Lizenz zu erhalten.
Prinzipiell eignen sich Entscheidungsbäume auch zur Erstellung von Regressionsmodellen, wenn die Klassen Intervalle einer stetigen Regressionsvariablen darstellen. Allerdings werden in der Praxis eher die weit entwickelten statistischen Verfahren für diese Aufgabe eingesetzt. Aus diesem Grunde erfolgt hier die Konzentration auf den Einsatz zur Klassifikation.