Skip to main content

20.04.2024 | Original Paper

Metric dimension and strong metric dimension in annihilator-ideal graphs

verfasst von: R. Shahriyari, R. Nikandish, A. Tehranian, H. Rasouli

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let R be a commutative ring with identity and A(R) be the set of ideals with non-zero annihilator. The annihilator-ideal graph of R is defined as the graph \(\mathrm{A_I}(R)\) with the vertex set \(A(R)^*=A(R)\setminus \{0\}\) and two distinct vertices LK are adjacent if and only if \(\textrm{Ann}_R(K) \cup \textrm{Ann}_R(L)\) is a proper subset of \(\textrm{Ann}_R(KL)\). In this paper, we determine the metric dimension of \(\mathrm{A_I}(R)\). Also, the twin-free clique number for \(\mathrm{A_I}(R)\) is computed and as an application the strong metric dimension in annihilator-ideal graphs is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adlifar, M., Payrovi, Sh.: Some remarks on the annihilator graph of a commutative ring. Hokkaido Math. J. 49(2), 325–332 (2020)MathSciNet Adlifar, M., Payrovi, Sh.: Some remarks on the annihilator graph of a commutative ring. Hokkaido Math. J. 49(2), 325–332 (2020)MathSciNet
2.
Zurück zum Zitat Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)MathSciNetCrossRef Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)MathSciNetCrossRef
3.
Zurück zum Zitat Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Boston (1969) Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Boston (1969)
5.
Zurück zum Zitat Behboodi, M., Rakeie, Z.: The annihilating-ideal graph of a commutative ring I. J. Algebra Appl. 10, 727–739 (2011)MathSciNetCrossRef Behboodi, M., Rakeie, Z.: The annihilating-ideal graph of a commutative ring I. J. Algebra Appl. 10, 727–739 (2011)MathSciNetCrossRef
6.
Zurück zum Zitat Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)MathSciNetCrossRef Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)MathSciNetCrossRef
7.
Zurück zum Zitat Dolẑan, D.: The metric dimension of the total graph of a finite commutative ring. Can. Math. Bull. 59, 748–759 (2016)MathSciNetCrossRef Dolẑan, D.: The metric dimension of the total graph of a finite commutative ring. Can. Math. Bull. 59, 748–759 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Dolzan, D.: The metric dimension of the annihilating-ideal graph of a finite commutative ring. Bull. Aust. Math. Soc. 103, 362–368 (2021)MathSciNetCrossRef Dolzan, D.: The metric dimension of the annihilating-ideal graph of a finite commutative ring. Bull. Aust. Math. Soc. 103, 362–368 (2021)MathSciNetCrossRef
9.
Zurück zum Zitat Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: On the strong metric dimension of annihilator graphs of commutative rings. Bull. Malays. Math. Sci. Soc. 44, 2507–2517 (2021)MathSciNetCrossRef Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: On the strong metric dimension of annihilator graphs of commutative rings. Bull. Malays. Math. Sci. Soc. 44, 2507–2517 (2021)MathSciNetCrossRef
10.
Zurück zum Zitat Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: Metric dimension of complement of annihilator graphs associated with commutative rings. Appl. Algebra Eng. Commun. Comput. 34, 995–011 (2023)MathSciNetCrossRef Ebrahimi, Sh., Nikandish, R., Tehranian, A., Rasouli, H.: Metric dimension of complement of annihilator graphs associated with commutative rings. Appl. Algebra Eng. Commun. Comput. 34, 995–011 (2023)MathSciNetCrossRef
11.
Zurück zum Zitat Khuller,S., Raghavachari,B., Rosenfeld,A.: Localization in graphs, Technical report CS-TR-3326, University of Maryland at College Park, (1994) Khuller,S., Raghavachari,B., Rosenfeld,A.: Localization in graphs, Technical report CS-TR-3326, University of Maryland at College Park, (1994)
12.
13.
Zurück zum Zitat Kuziak, D., Yero, I.G., Rodrguez-Velzquez, J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161, 1022–1027 (2013)MathSciNetCrossRef Kuziak, D., Yero, I.G., Rodrguez-Velzquez, J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161, 1022–1027 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat Ma, X., Feng, M., Wang, K.: The strong metric dimension of the power graph of a finite group. Discrete Appl. Math. 239, 159–164 (2018)MathSciNetCrossRef Ma, X., Feng, M., Wang, K.: The strong metric dimension of the power graph of a finite group. Discrete Appl. Math. 239, 159–164 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Ma, X., Li, L.: On the metric dimension of the reduced power graph of a finite group. Taiwan. J. Math. 26(1), 1–15 (2022)MathSciNetCrossRef Ma, X., Li, L.: On the metric dimension of the reduced power graph of a finite group. Taiwan. J. Math. 26(1), 1–15 (2022)MathSciNetCrossRef
16.
Zurück zum Zitat Ma, X., Zhai, L.: Strong metric dimensions for power graphs of finite groups. Commun. Algebra 49(11), 4577–4587 (2021)MathSciNetCrossRef Ma, X., Zhai, L.: Strong metric dimensions for power graphs of finite groups. Commun. Algebra 49(11), 4577–4587 (2021)MathSciNetCrossRef
17.
Zurück zum Zitat Nikandish, R., Nikmehr, M.J., Bakhtyiari, M.: Coloring of the the annihilator graph of a commutative ring. J. Algebra Appl. 15(7), 1650124 (2016)MathSciNetCrossRef Nikandish, R., Nikmehr, M.J., Bakhtyiari, M.: Coloring of the the annihilator graph of a commutative ring. J. Algebra Appl. 15(7), 1650124 (2016)MathSciNetCrossRef
18.
Zurück zum Zitat Nikmehr, M.J., Hosseini, S.M.: More on the annihilator-ideal graph of a commutative ring. J. Algebra Appl. 18(8), 1950160 (2019)MathSciNetCrossRef Nikmehr, M.J., Hosseini, S.M.: More on the annihilator-ideal graph of a commutative ring. J. Algebra Appl. 18(8), 1950160 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat Nikmehr, M.J., Nikandish, R., Bakhtyiari, M.: More on the annihilator graph of a commutative ring. Hokkaido Math. J. 46, 107–118 (2017)MathSciNetCrossRef Nikmehr, M.J., Nikandish, R., Bakhtyiari, M.: More on the annihilator graph of a commutative ring. Hokkaido Math. J. 46, 107–118 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)MathSciNetCrossRef Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)MathSciNetCrossRef
21.
Zurück zum Zitat Pirzada, S., Aijaz, M., Redmond, S.P.: Upper dimension and bases of zero-divisor graphs of commutative rings. AKCE Int. J. Gr. Combin. 17, 168–173 (2020)MathSciNet Pirzada, S., Aijaz, M., Redmond, S.P.: Upper dimension and bases of zero-divisor graphs of commutative rings. AKCE Int. J. Gr. Combin. 17, 168–173 (2020)MathSciNet
22.
Zurück zum Zitat Pirzada, S., Imran Bhat, M.: Computing metric dimension of compressed zero divisor graphs associated of rings. Acta Univ. Sap. Math. 10(2), 298–318 (2018)MathSciNet Pirzada, S., Imran Bhat, M.: Computing metric dimension of compressed zero divisor graphs associated of rings. Acta Univ. Sap. Math. 10(2), 298–318 (2018)MathSciNet
23.
Zurück zum Zitat Pirzada, S., Raja, R.: On the metric domension of a zero-divisor graph. Comm. Algebra 45(4), 1399–1408 (2017)MathSciNetCrossRef Pirzada, S., Raja, R.: On the metric domension of a zero-divisor graph. Comm. Algebra 45(4), 1399–1408 (2017)MathSciNetCrossRef
24.
Zurück zum Zitat Salehifar, S., Khashyarmanesh, K., Afkhami, M.: On the annihilator-ideal graph of commutative rings. Ricerche Mat. 66, 431–447 (2017)MathSciNetCrossRef Salehifar, S., Khashyarmanesh, K., Afkhami, M.: On the annihilator-ideal graph of commutative rings. Ricerche Mat. 66, 431–447 (2017)MathSciNetCrossRef
26.
27.
Zurück zum Zitat Soleymanivarniab, V., Tehranian, A., Nikandish, R.: On the metric dimension of annihilator graphs of commutative rings. J. Algebra Appl. 19(5), 2050089 (2020)MathSciNetCrossRef Soleymanivarniab, V., Tehranian, A., Nikandish, R.: On the metric dimension of annihilator graphs of commutative rings. J. Algebra Appl. 19(5), 2050089 (2020)MathSciNetCrossRef
28.
Zurück zum Zitat West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001) West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
Metadaten
Titel
Metric dimension and strong metric dimension in annihilator-ideal graphs
verfasst von
R. Shahriyari
R. Nikandish
A. Tehranian
H. Rasouli
Publikationsdatum
20.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00657-3