Skip to main content

2019 | OriginalPaper | Buchkapitel

26. MHD Convection with Heat Generation in a Porous Cavity

verfasst von : Soumyodeep Mukherjee, Nirmalendu Biswas, Nirmal K. Manna

Erschienen in: Advances in Materials, Mechanical and Industrial Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sheikholeslami, M.: Numerical simulation of magnetic nanofluid natural convection in porous media. Phy. Lett. A. 381, 494–503 (2017)CrossRef Sheikholeslami, M.: Numerical simulation of magnetic nanofluid natural convection in porous media. Phy. Lett. A. 381, 494–503 (2017)CrossRef
2.
Zurück zum Zitat Oztop, H., Bilgen, E.: Natural convection in differentially heated and partially. Int. J. Heat Fluid Flow. 27, 466–475 (2016)CrossRef Oztop, H., Bilgen, E.: Natural convection in differentially heated and partially. Int. J. Heat Fluid Flow. 27, 466–475 (2016)CrossRef
3.
Zurück zum Zitat Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)CrossRef Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)CrossRef
4.
Zurück zum Zitat El-Amin, M.F.: Combined effect of internal heat generation and magnetic field. J. Magn. Magn. Mater. 270, 130–135 (2004)CrossRef El-Amin, M.F.: Combined effect of internal heat generation and magnetic field. J. Magn. Magn. Mater. 270, 130–135 (2004)CrossRef
5.
Zurück zum Zitat Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRef Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRef
6.
Zurück zum Zitat Sivaraj, C., Sheremet, M.A.: MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J. Magn. Magn. Mater. 426, 351–360 (2017)CrossRef Sivaraj, C., Sheremet, M.A.: MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J. Magn. Magn. Mater. 426, 351–360 (2017)CrossRef
7.
Zurück zum Zitat Selimefendigil, F., Öztop, H.F.: Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J. Magn. Magn. Mater. 417, 327–337 (2016)CrossRef Selimefendigil, F., Öztop, H.F.: Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J. Magn. Magn. Mater. 417, 327–337 (2016)CrossRef
8.
Zurück zum Zitat Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity witha local heatsource. J. Magn. Magn. Mater. 419, 476–484 (2017)CrossRef Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity witha local heatsource. J. Magn. Magn. Mater. 419, 476–484 (2017)CrossRef
9.
Zurück zum Zitat Mahmoudi, A., Mejri, I., Abbassi, M.A., Omri, A.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder. Technol. 256, 257–271 (2014)CrossRef Mahmoudi, A., Mejri, I., Abbassi, M.A., Omri, A.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder. Technol. 256, 257–271 (2014)CrossRef
10.
Zurück zum Zitat Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)CrossRef Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)CrossRef
11.
Zurück zum Zitat Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder. Technol. 235, 873–879 (2013)CrossRef Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder. Technol. 235, 873–879 (2013)CrossRef
12.
Zurück zum Zitat Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder. Technol. 239, 259–265 (2013)CrossRef Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder. Technol. 239, 259–265 (2013)CrossRef
13.
Zurück zum Zitat Kefayati, G.H.R.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder. Technol. 243, 171–183 (2013)CrossRef Kefayati, G.H.R.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder. Technol. 243, 171–183 (2013)CrossRef
14.
Zurück zum Zitat Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat. Mass. Transf. 40, 67–77 (2013)CrossRef Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat. Mass. Transf. 40, 67–77 (2013)CrossRef
15.
Zurück zum Zitat Mliki, B., Abbassi, M.A., Omri, A., Zeghmati, B.: Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder. Technol. 284, 312–325 (2015)CrossRef Mliki, B., Abbassi, M.A., Omri, A., Zeghmati, B.: Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder. Technol. 284, 312–325 (2015)CrossRef
16.
Zurück zum Zitat Malik, S., Nayak, A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat. Mass. Transf. 111, 329–345 (2017)CrossRef Malik, S., Nayak, A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat. Mass. Transf. 111, 329–345 (2017)CrossRef
17.
Zurück zum Zitat Mojumder, S., Rabbi, K.M., Saha, S., Hasan, M.N., Saha, S.C.: Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J. Magn. Magn. Mater. 407, 412–424 (2016)CrossRef Mojumder, S., Rabbi, K.M., Saha, S., Hasan, M.N., Saha, S.C.: Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J. Magn. Magn. Mater. 407, 412–424 (2016)CrossRef
18.
Zurück zum Zitat Bondareva, N.S., Sheremet, M.A., Pop, I.: Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int. J. Numer. Methods. Heat Fluid Flow. 25, 1924–1946 (2015)CrossRef Bondareva, N.S., Sheremet, M.A., Pop, I.: Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int. J. Numer. Methods. Heat Fluid Flow. 25, 1924–1946 (2015)CrossRef
19.
Zurück zum Zitat Sheremet, M.A., Pop, I., Rosca, N.C.: Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)CrossRef Sheremet, M.A., Pop, I., Rosca, N.C.: Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)CrossRef
20.
Zurück zum Zitat Karimipour, A., Taghipour, A., Malvandi, A.: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater. 419, 420–428 (2016)CrossRef Karimipour, A., Taghipour, A., Malvandi, A.: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater. 419, 420–428 (2016)CrossRef
21.
Zurück zum Zitat Malvandi, A.: Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater. 406, 95–102 (2016)CrossRef Malvandi, A.: Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater. 406, 95–102 (2016)CrossRef
22.
Zurück zum Zitat Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015)CrossRef Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015)CrossRef
23.
Zurück zum Zitat Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J. Phy. 56, 193–211 (2018)CrossRef Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J. Phy. 56, 193–211 (2018)CrossRef
24.
Zurück zum Zitat Gibanov, N.S., Sheremet, M.A., Oztop, H.A., Al-Salem, K.: MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 452, 193–204 (2018)CrossRef Gibanov, N.S., Sheremet, M.A., Oztop, H.A., Al-Salem, K.: MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 452, 193–204 (2018)CrossRef
25.
Zurück zum Zitat Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)CrossRef Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)CrossRef
26.
Zurück zum Zitat Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transf. 52, 1525–1533 (2009)CrossRef Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transf. 52, 1525–1533 (2009)CrossRef
27.
Zurück zum Zitat Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. Int. J. Heat Mass Transf. 54, 1734–1742 (2011)CrossRef Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. Int. J. Heat Mass Transf. 54, 1734–1742 (2011)CrossRef
28.
Zurück zum Zitat Jiang, C., Feng, W., Zhong, H., Zeng, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J. Magn. Magn. Mater. 357, 53–60 (2014)CrossRef Jiang, C., Feng, W., Zhong, H., Zeng, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J. Magn. Magn. Mater. 357, 53–60 (2014)CrossRef
29.
Zurück zum Zitat Nayak, A.K., Malik, S., Venkateshwarlu, K., Jena, P.K.: Magneto-convection and its effect on partially active thermal zones in a porous square domain. Int. J. Heat Mass Transf. 95, 913–926 (2016)CrossRef Nayak, A.K., Malik, S., Venkateshwarlu, K., Jena, P.K.: Magneto-convection and its effect on partially active thermal zones in a porous square domain. Int. J. Heat Mass Transf. 95, 913–926 (2016)CrossRef
30.
Zurück zum Zitat Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review, Renew. Sustain Energy Rev. 21, 548–561 (2013)CrossRef Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review, Renew. Sustain Energy Rev. 21, 548–561 (2013)CrossRef
31.
Zurück zum Zitat Sarkar, S., Ganguly, S., Biswas, G.: Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int. J. Heat Mass Transf. 71, 328–340 (2014)CrossRef Sarkar, S., Ganguly, S., Biswas, G.: Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int. J. Heat Mass Transf. 71, 328–340 (2014)CrossRef
32.
Zurück zum Zitat Chamkha, A.: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption. Numer. Heat Transf. Part A 41, 529–546 (2002)CrossRef Chamkha, A.: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption. Numer. Heat Transf. Part A 41, 529–546 (2002)CrossRef
33.
Zurück zum Zitat Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)CrossRef Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)CrossRef
34.
Zurück zum Zitat Sheikholeslami, M., Rashidi, M., Hayat, T., Ganji, D.: Free convection of magnetic nanofluid considering mfd viscosity effect. J. Mol. Liq. 218, 393–399 (2016)CrossRef Sheikholeslami, M., Rashidi, M., Hayat, T., Ganji, D.: Free convection of magnetic nanofluid considering mfd viscosity effect. J. Mol. Liq. 218, 393–399 (2016)CrossRef
35.
Zurück zum Zitat Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 98, 40–51 (2016)CrossRef Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 98, 40–51 (2016)CrossRef
36.
Zurück zum Zitat Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin, Germany (2006)MATH Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin, Germany (2006)MATH
37.
Zurück zum Zitat Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, Hemisphere (1980) Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, Hemisphere (1980)
38.
Zurück zum Zitat Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111, 305–329 (2016)MathSciNetCrossRef Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media 111, 305–329 (2016)MathSciNetCrossRef
39.
Zurück zum Zitat Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRef Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci. 50, 1748–1756 (2011)CrossRef
Metadaten
Titel
MHD Convection with Heat Generation in a Porous Cavity
verfasst von
Soumyodeep Mukherjee
Nirmalendu Biswas
Nirmal K. Manna
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-96968-8_26

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.