The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sheikholeslami, M.: Numerical simulation of magnetic nanofluid natural convection in porous media. Phy. Lett. A.
381, 494–503 (2017)
CrossRef
2.
Oztop, H., Bilgen, E.: Natural convection in differentially heated and partially. Int. J. Heat Fluid Flow.
27, 466–475 (2016)
CrossRef
3.
Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf.
79, 137–145 (2014)
CrossRef
4.
El-Amin, M.F.: Combined effect of internal heat generation and magnetic field. J. Magn. Magn. Mater.
270, 130–135 (2004)
CrossRef
5.
Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci.
50, 1748–1756 (2011)
CrossRef
6.
Sivaraj, C., Sheremet, M.A.: MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J. Magn. Magn. Mater.
426, 351–360 (2017)
CrossRef
7.
Selimefendigil, F., Öztop, H.F.: Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J. Magn. Magn. Mater.
417, 327–337 (2016)
CrossRef
8.
Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity witha local heatsource. J. Magn. Magn. Mater.
419, 476–484 (2017)
CrossRef
9.
Mahmoudi, A., Mejri, I., Abbassi, M.A., Omri, A.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder. Technol.
256, 257–271 (2014)
CrossRef
10.
Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Numerical investigation of MHD effects on Al
2O
3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy
60, 501–510 (2013)
CrossRef
11.
Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder. Technol.
235, 873–879 (2013)
CrossRef
12.
Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder. Technol.
239, 259–265 (2013)
CrossRef
13.
Kefayati, G.H.R.: Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder. Technol.
243, 171–183 (2013)
CrossRef
14.
Kefayati, G.H.R.: Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int. Commun. Heat. Mass. Transf.
40, 67–77 (2013)
CrossRef
15.
Mliki, B., Abbassi, M.A., Omri, A., Zeghmati, B.: Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder. Technol.
284, 312–325 (2015)
CrossRef
16.
Malik, S., Nayak, A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat. Mass. Transf.
111, 329–345 (2017)
CrossRef
17.
Mojumder, S., Rabbi, K.M., Saha, S., Hasan, M.N., Saha, S.C.: Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J. Magn. Magn. Mater.
407, 412–424 (2016)
CrossRef
18.
Bondareva, N.S., Sheremet, M.A., Pop, I.: Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int. J. Numer. Methods. Heat Fluid Flow.
25, 1924–1946 (2015)
CrossRef
19.
Sheremet, M.A., Pop, I., Rosca, N.C.: Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng.
61, 211–222 (2016)
CrossRef
20.
Karimipour, A., Taghipour, A., Malvandi, A.: Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J. Magn. Magn. Mater.
419, 420–428 (2016)
CrossRef
21.
Malvandi, A.: Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater.
406, 95–102 (2016)
CrossRef
22.
Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: MHD mixed convection in a vertical annulus filled with Al
2O
3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater.
382, 296–306 (2015)
CrossRef
23.
Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J. Phy.
56, 193–211 (2018)
CrossRef
24.
Gibanov, N.S., Sheremet, M.A., Oztop, H.A., Al-Salem, K.: MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater.
452, 193–204 (2018)
CrossRef
25.
Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf.
67, 1131–1144 (2013)
CrossRef
26.
Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transf.
52, 1525–1533 (2009)
CrossRef
27.
Revnic, C., Grosan, T., Pop, I., Ingham, D.B.: Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation. Int. J. Heat Mass Transf.
54, 1734–1742 (2011)
CrossRef
28.
Jiang, C., Feng, W., Zhong, H., Zeng, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J. Magn. Magn. Mater.
357, 53–60 (2014)
CrossRef
29.
Nayak, A.K., Malik, S., Venkateshwarlu, K., Jena, P.K.: Magneto-convection and its effect on partially active thermal zones in a porous square domain. Int. J. Heat Mass Transf.
95, 913–926 (2016)
CrossRef
30.
Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review, Renew. Sustain Energy Rev.
21, 548–561 (2013)
CrossRef
31.
Sarkar, S., Ganguly, S., Biswas, G.: Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int. J. Heat Mass Transf.
71, 328–340 (2014)
CrossRef
32.
Chamkha, A.: Hydromagnetic combined convection flow in a vertical lid-driven cavity enclosure with internal heat generation or absorption. Numer. Heat Transf. Part A
41, 529–546 (2002)
CrossRef
33.
Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al
2O
3-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf.
96, 513–524 (2016)
CrossRef
34.
Sheikholeslami, M., Rashidi, M., Hayat, T., Ganji, D.: Free convection of magnetic nanofluid considering mfd viscosity effect. J. Mol. Liq.
218, 393–399 (2016)
CrossRef
35.
Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf.
98, 40–51 (2016)
CrossRef
36.
Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin, Germany (2006)
MATH
37.
Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, Hemisphere (1980)
38.
Datta, P., Mahapatra, P.S., Ghosh, K., Manna, N.K., Sen, S.: Heat transfer and entropy generation in a porous square enclosure in presence of an adiabatic block. Transp. Porous Media
111, 305–329 (2016)
MathSciNetCrossRef
39.
Ghasemi, B., Aminossadati, S.M., Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Ther. Sci.
50, 1748–1756 (2011)
CrossRef
Über dieses Kapitel
Titel
MHD Convection with Heat Generation in a Porous Cavity
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Lesen Sie in diesem ausgewählten Buchkapitel alles über den 3D-Druck im Hinblick auf Begriffe, Funktionsweise, Anwendungsbereiche sowie Nutzen und Grenzen additiver Fertigungsverfahren. Eigenschaften eines schlanken Produktionssystems sowie der Aspekt der „Schlankheit“ werden ebenso beleuchtet wie die Prinzipien und Methoden der Lean Production. Jetzt gratis downloaden!
Marktübersichten
Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.