Skip to main content

2010 | OriginalPaper | Buchkapitel

8. Micro-environmental Modelling

verfasst von : Tareq Hussein, Markku Kulmala

Erschienen in: Human Exposure to Pollutants via Dermal Absorption and Inhalation

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

“Indoor air quality” is a wide subject with different social, economic, and health aspects. In developed countries, people spend more than 80% of their time indoors where they are exposed to many kinds of air pollutants either from outdoor origin or produced indoors. An air pollutant can be a gas or an aerosol particle (solid, liquid, radioactive, bio-aerosols, etc.). Indoor air pollutants are transported from the outdoor air by means of mechanical ventilation systems or across the building shell as a result of natural ventilation. In many aspects, the indoor-to-outdoor relationship of air pollutants, as well as, the dynamic behavior of air pollutants can be addressed and investigated by means of mathematical models. However, the accuracy of such mathematical models depends on many factors including, most importantly, the confidence in the input parameters, validity of the assumptions, description of the processes, and user influence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadie, M., Limam, K., & Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle deposition. Building and Environment, 36, 821–827.CrossRef Abadie, M., Limam, K., & Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle deposition. Building and Environment, 36, 821–827.CrossRef
Zurück zum Zitat Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.CrossRef Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.CrossRef
Zurück zum Zitat Afshari, A., Matson, U., & Ekberg, L. E. (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15, 141–150.CrossRef Afshari, A., Matson, U., & Ekberg, L. E. (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15, 141–150.CrossRef
Zurück zum Zitat Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60.CrossRef Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60.CrossRef
Zurück zum Zitat Asmi, A. J., Pirjola, L. H., & Kulmala, M. A. (2004). Sectional aerosol model for submicron particles in indoor air. Scandinavian Journal of Work, Environment and Health, 30(Suppl 2), 63–72. Asmi, A. J., Pirjola, L. H., & Kulmala, M. A. (2004). Sectional aerosol model for submicron particles in indoor air. Scandinavian Journal of Work, Environment and Health, 30(Suppl 2), 63–72.
Zurück zum Zitat Borchiellini, R., & Fürbringer, J.-M. (1999). An evaluation exercise of a multizone air flow model. Energy and Buildings, 30, 35–51.CrossRef Borchiellini, R., & Fürbringer, J.-M. (1999). An evaluation exercise of a multizone air flow model. Energy and Buildings, 30, 35–51.CrossRef
Zurück zum Zitat Corner, B. J., & Pendlebury, E. D. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society, B64, 645–654. Corner, B. J., & Pendlebury, E. D. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society, B64, 645–654.
Zurück zum Zitat Crouse, B., Krafczyk, M., Kühner, S., Rank, E., & van Treeck, C. (2002). Indoor air flow analysis based on lattice Boltzmann methods. Energy and Buildings, 34, 941–949.CrossRef Crouse, B., Krafczyk, M., Kühner, S., Rank, E., & van Treeck, C. (2002). Indoor air flow analysis based on lattice Boltzmann methods. Energy and Buildings, 34, 941–949.CrossRef
Zurück zum Zitat Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K., et al. (1996). On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings, 24, 155–165.CrossRef Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K., et al. (1996). On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings, 24, 155–165.CrossRef
Zurück zum Zitat Fan, Y. (1995). CFD modelling of the air and contaminant distribution in rooms. Energy and Buildings, 23, 33–39.CrossRef Fan, Y. (1995). CFD modelling of the air and contaminant distribution in rooms. Energy and Buildings, 23, 33–39.CrossRef
Zurück zum Zitat Fan, C. W., & Zhang, J. J. (2001). Characterization of emissions from portable household combustion devices: Particle size distributions, emission rates and factors, and potential exposures. Atmospheric Environment, 35, 1281–1290.CrossRef Fan, C. W., & Zhang, J. J. (2001). Characterization of emissions from portable household combustion devices: Particle size distributions, emission rates and factors, and potential exposures. Atmospheric Environment, 35, 1281–1290.CrossRef
Zurück zum Zitat Ferro, A. R., Kopperud, R. J., & Hildemann, L. M. (2004). Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 38, 1759–1764.CrossRef Ferro, A. R., Kopperud, R. J., & Hildemann, L. M. (2004). Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 38, 1759–1764.CrossRef
Zurück zum Zitat Feustel, H. E. (1999). COMIS-an international multizone air-flow and contaminant transport model. Energy and Buildings, 30, 3–18.CrossRef Feustel, H. E. (1999). COMIS-an international multizone air-flow and contaminant transport model. Energy and Buildings, 30, 3–18.CrossRef
Zurück zum Zitat Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.CrossRef Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.CrossRef
Zurück zum Zitat Friess, H., & Yadigaroglu, G. (2002). Modeling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. Journal of Aerosol Science, 33, 883–906.CrossRef Friess, H., & Yadigaroglu, G. (2002). Modeling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. Journal of Aerosol Science, 33, 883–906.CrossRef
Zurück zum Zitat Fuchs, N. A. (1964). The mechanics of aerosols. New York: Dover. Fuchs, N. A. (1964). The mechanics of aerosols. New York: Dover.
Zurück zum Zitat Fuchs, N. A., & Sutugin, A. G. (1971). Highly dispersed aerosol. In G. M. Hidy & J. R. Brock (Eds.), Topics in current aerosol research. New York: Pergamon. Fuchs, N. A., & Sutugin, A. G. (1971). Highly dispersed aerosol. In G. M. Hidy & J. R. Brock (Eds.), Topics in current aerosol research. New York: Pergamon.
Zurück zum Zitat Gan, G. (1995). Evaluation of room air distributions systems using computational fluid dynamics. Energy and Buildings, 23, 83–93.CrossRef Gan, G. (1995). Evaluation of room air distributions systems using computational fluid dynamics. Energy and Buildings, 23, 83–93.CrossRef
Zurück zum Zitat Goodfellow, H., & Tähti, E. (2001). Industrial ventilation: Design guidebook (p. 685). California: Academic (Gustavsson, J. [1996]. Cabin air filters: Performance and requirements. SAE Conference, Detroit, February 1996). Goodfellow, H., & Tähti, E. (2001). Industrial ventilation: Design guidebook (p. 685). California: Academic (Gustavsson, J. [1996]. Cabin air filters: Performance and requirements. SAE Conference, Detroit, February 1996).
Zurück zum Zitat Guha, A. (1997). A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 28, 1517–1537.CrossRef Guha, A. (1997). A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 28, 1517–1537.CrossRef
Zurück zum Zitat Haas, A., Weber, A., Dorer, V., Keilholz, W., & Pelletret, R. (2002). COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling. Energy and Buildings, 34, 873–882.CrossRef Haas, A., Weber, A., Dorer, V., Keilholz, W., & Pelletret, R. (2002). COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling. Energy and Buildings, 34, 873–882.CrossRef
Zurück zum Zitat Hanley, J. T., Ensor, D. S., Smith, D. D., & Sparks, L. E. (1994). Fractional aerosol filtration efficiency of in duct ventilation air cleaners. Indoor Air, 4, 169–178.CrossRef Hanley, J. T., Ensor, D. S., Smith, D. D., & Sparks, L. E. (1994). Fractional aerosol filtration efficiency of in duct ventilation air cleaners. Indoor Air, 4, 169–178.CrossRef
Zurück zum Zitat He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405–3415.CrossRef He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405–3415.CrossRef
Zurück zum Zitat Hinds, W. C. (1999). Aerosol technology (2nd ed.). New York: Wiley. Hinds, W. C. (1999). Aerosol technology (2nd ed.). New York: Wiley.
Zurück zum Zitat Hussein, T. (2005). Indoor and outdoor aerosol particle size characterization in Helsinki. Report Series in Aerosol Science No: 74. Helsinki, Finland: Finnish Aerosol Association Research. Hussein, T. (2005). Indoor and outdoor aerosol particle size characterization in Helsinki. Report Series in Aerosol Science No: 74. Helsinki, Finland: Finnish Aerosol Association Research.
Zurück zum Zitat Hussein, T., Glytsos, T., Ondráček, J., Ždímal, V., Hämeri, K., Lazaridis, M., et al. (2006). Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 40, 4285–4307.CrossRef Hussein, T., Glytsos, T., Ondráček, J., Ždímal, V., Hämeri, K., Lazaridis, M., et al. (2006). Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 40, 4285–4307.CrossRef
Zurück zum Zitat Hussein, T., Hruška, A., Dohányosová, P., Džumbová, L., Hemerka, J., & Kulmala, M., et al. (2009a). Evaluation of deposition rates of aerosol particles on smooth surfaces inside a test chamber. Atmospheric Environment, 43, 905–914.CrossRef Hussein, T., Hruška, A., Dohányosová, P., Džumbová, L., Hemerka, J., & Kulmala, M., et al. (2009a). Evaluation of deposition rates of aerosol particles on smooth surfaces inside a test chamber. Atmospheric Environment, 43, 905–914.CrossRef
Zurück zum Zitat Hussein, T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K., & Kulmala, M. (2005b). Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Science and Technology, 39(11), 1111–1127.CrossRef Hussein, T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K., & Kulmala, M. (2005b). Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Science and Technology, 39(11), 1111–1127.CrossRef
Zurück zum Zitat Hussein, T., Kubincová, L., Dohányosová, P., Hruška, A., Džumbová, L., Hemerka, J., et al. (2009b). Deposition of aerosol particles on rough surfaces inside a test chamber. Buildings and Environment, 44, 2056–2063.CrossRef Hussein, T., Kubincová, L., Dohányosová, P., Hruška, A., Džumbová, L., Hemerka, J., et al. (2009b). Deposition of aerosol particles on rough surfaces inside a test chamber. Buildings and Environment, 44, 2056–2063.CrossRef
Zurück zum Zitat Jamriska, M., Morawska, L., & Ensor, D. S. (2003). Control strategies for sub-micrometer particles indoors: Model study of air filtration and ventilation. Indoor Air, 13, 96–105.CrossRef Jamriska, M., Morawska, L., & Ensor, D. S. (2003). Control strategies for sub-micrometer particles indoors: Model study of air filtration and ventilation. Indoor Air, 13, 96–105.CrossRef
Zurück zum Zitat Ju, C., & Spengler, J. D. (1981). Room to room variations in concentration of respirable particles in residences. Environmental Science and Technology, 15, 592–596.CrossRef Ju, C., & Spengler, J. D. (1981). Room to room variations in concentration of respirable particles in residences. Environmental Science and Technology, 15, 592–596.CrossRef
Zurück zum Zitat Kildeso, J., Vinzents, P., Schneider, T., & Kloch, N. P. (1999). A simple method for measuring the potential resuspension of dust from carpets in the indoor environment. Textile Research Journal, 69, 169–175.CrossRef Kildeso, J., Vinzents, P., Schneider, T., & Kloch, N. P. (1999). A simple method for measuring the potential resuspension of dust from carpets in the indoor environment. Textile Research Journal, 69, 169–175.CrossRef
Zurück zum Zitat Korhonen, H., Lehtinen, K. E. J., & Kulmala, M. (2004). Aerosol dynamic model UHMA: Model development and validation. Atmospheric Chemistry and Physics, 4, 757–771.CrossRef Korhonen, H., Lehtinen, K. E. J., & Kulmala, M. (2004). Aerosol dynamic model UHMA: Model development and validation. Atmospheric Chemistry and Physics, 4, 757–771.CrossRef
Zurück zum Zitat Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.CrossRef Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.CrossRef
Zurück zum Zitat Lai, A. C. K. (2006). Investigation of electrostatic forces on particle deposition in a test chamber. Indoor Built Environment, 15, 179–186.CrossRef Lai, A. C. K. (2006). Investigation of electrostatic forces on particle deposition in a test chamber. Indoor Built Environment, 15, 179–186.CrossRef
Zurück zum Zitat Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31, 463–476.CrossRef Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31, 463–476.CrossRef
Zurück zum Zitat Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2001). Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements. Aerosol Science, 32, 121–137.CrossRef Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2001). Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements. Aerosol Science, 32, 121–137.CrossRef
Zurück zum Zitat Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2002). Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 36, 973–982.CrossRef Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2002). Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 36, 973–982.CrossRef
Zurück zum Zitat Lazaridis, M., & Drossinos, Y. (1998). Multilayer resuspension of small identical particles by turbulent flow. Aerosol Science and Technology, 28(6), 548–560.CrossRef Lazaridis, M., & Drossinos, Y. (1998). Multilayer resuspension of small identical particles by turbulent flow. Aerosol Science and Technology, 28(6), 548–560.CrossRef
Zurück zum Zitat Lee, S.-C., Guo, H., Li, W.-M., & Chan, L.-Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940.CrossRef Lee, S.-C., Guo, H., Li, W.-M., & Chan, L.-Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940.CrossRef
Zurück zum Zitat Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Buildings and Environment, 36, 59–71.CrossRef Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Buildings and Environment, 36, 59–71.CrossRef
Zurück zum Zitat Liu, D.-L., & Nazaroff, W. W. (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35, 4451–4462.CrossRef Liu, D.-L., & Nazaroff, W. W. (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35, 4451–4462.CrossRef
Zurück zum Zitat Long, C. H., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. Journal of the Air & Waste Management Association, 50, 1236–1250. Long, C. H., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. Journal of the Air & Waste Management Association, 50, 1236–1250.
Zurück zum Zitat Long, C. M., Suh, H. H., Catalano, P. J., & Koutrakis, P. (2001). Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental Science and Technology 35, 2089–2099.CrossRef Long, C. M., Suh, H. H., Catalano, P. J., & Koutrakis, P. (2001). Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental Science and Technology 35, 2089–2099.CrossRef
Zurück zum Zitat Lum, R. M., & Graedel, T. E. (1973). Measurements and models of indoor aerosol size spectra. Atmospheric Environment, 7, 827–842.CrossRef Lum, R. M., & Graedel, T. E. (1973). Measurements and models of indoor aerosol size spectra. Atmospheric Environment, 7, 827–842.CrossRef
Zurück zum Zitat McMurry, P. H., & Radar, D. J. (1985). Aerosol wall losses in electrically charged chambers. Aerosol Science and Technology, 4, 249–268.CrossRef McMurry, P. H., & Radar, D. J. (1985). Aerosol wall losses in electrically charged chambers. Aerosol Science and Technology, 4, 249–268.CrossRef
Zurück zum Zitat Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.CrossRef Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.CrossRef
Zurück zum Zitat Miller, S. L., & Nazaroff, W. W. (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 35, 2053–2067.CrossRef Miller, S. L., & Nazaroff, W. W. (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 35, 2053–2067.CrossRef
Zurück zum Zitat Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.CrossRef Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.CrossRef
Zurück zum Zitat Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guom, Z., Tucker, W. G., Fortmann, R., et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34, 127–136. Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guom, Z., Tucker, W. G., Fortmann, R., et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34, 127–136.
Zurück zum Zitat Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 20, 924–934.CrossRef Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 20, 924–934.CrossRef
Zurück zum Zitat Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 23, 157–166.CrossRef Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 23, 157–166.CrossRef
Zurück zum Zitat Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl. 7), 175–183.CrossRef Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl. 7), 175–183.CrossRef
Zurück zum Zitat Otten, J. A., & Burge, H. A. (1999). Bacteria. In J. Macher (Ed.), Bioaerosols, assessment and control (pp. 183-1810). Cincinnati, OH: American Conference of Governmental Industrial Hygienists. Otten, J. A., & Burge, H. A. (1999). Bacteria. In J. Macher (Ed.), Bioaerosols, assessment and control (pp. 183-1810). Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
Zurück zum Zitat Platts-Mills, T. A. E., Ward, G. W., Sporik, R., Gelber, L. E., Champman, M. D., & Heymann, P. W. (1991). Epidemiology of the relationship between exposure to indoor allergins and asthma. International Archives of Allergy and Applied Immunology, 87(2), 505–510. Platts-Mills, T. A. E., Ward, G. W., Sporik, R., Gelber, L. E., Champman, M. D., & Heymann, P. W. (1991). Epidemiology of the relationship between exposure to indoor allergins and asthma. International Archives of Allergy and Applied Immunology, 87(2), 505–510.
Zurück zum Zitat Porstendörfer, J., & Reineking, A. (1992). Indoor behavior and characteristics of radon progeny. Radiation Protection Dosimetry, 45, 303–311. Porstendörfer, J., & Reineking, A. (1992). Indoor behavior and characteristics of radon progeny. Radiation Protection Dosimetry, 45, 303–311.
Zurück zum Zitat Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35, 515–526.CrossRef Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35, 515–526.CrossRef
Zurück zum Zitat Raunemaa, T., Kulmala, M., Saari, H., Olin, M., & Kulmala, M. H. (1989). Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 11, 11–25.CrossRef Raunemaa, T., Kulmala, M., Saari, H., Olin, M., & Kulmala, M. H. (1989). Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 11, 11–25.CrossRef
Zurück zum Zitat Ren, Z., & Stewart, J. (2003). Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings, 35, 257–271.CrossRef Ren, Z., & Stewart, J. (2003). Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings, 35, 257–271.CrossRef
Zurück zum Zitat Riley, W. J., Mckone, T. E., Lai, A. C. K., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36, 200–207.CrossRef Riley, W. J., Mckone, T. E., Lai, A. C. K., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36, 200–207.CrossRef
Zurück zum Zitat Roulet, C.-A., Fürbringer, J.-M., & Creton, P. (1999). The influence of the user on the results of multizone air flow simulations with COMIS. Energy and Buildings, 30, 73–86.CrossRef Roulet, C.-A., Fürbringer, J.-M., & Creton, P. (1999). The influence of the user on the results of multizone air flow simulations with COMIS. Energy and Buildings, 30, 73–86.CrossRef
Zurück zum Zitat Schneider, T., Kildeso, J., & Breum, N. O. (1999). A two-compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Building and Environment, 34, 583–595.CrossRef Schneider, T., Kildeso, J., & Breum, N. O. (1999). A two-compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Building and Environment, 34, 583–595.CrossRef
Zurück zum Zitat Seinfeld, H. S., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley. Seinfeld, H. S., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change (2nd ed.). New York: Wiley.
Zurück zum Zitat Shimada, M., Okuyama, K., Kousaka, Y., Okuyama, Y., & Seinfeld, J. H. (1989). Enhancement of Brownian and turbulent diffusive deposition of charged particles in the presence of an electric field. Journal of Colloid and Interface Science, l28, 157–168.CrossRef Shimada, M., Okuyama, K., Kousaka, Y., Okuyama, Y., & Seinfeld, J. H. (1989). Enhancement of Brownian and turbulent diffusive deposition of charged particles in the presence of an electric field. Journal of Colloid and Interface Science, l28, 157–168.CrossRef
Zurück zum Zitat Sippola, R., & Nazaroff, W. W. (2003). Modeling particle loss in ventilation ducts. Atmospheric Environment, 37, 5597–5609.CrossRef Sippola, R., & Nazaroff, W. W. (2003). Modeling particle loss in ventilation ducts. Atmospheric Environment, 37, 5597–5609.CrossRef
Zurück zum Zitat Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36, 1811–1819.CrossRef Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36, 1811–1819.CrossRef
Zurück zum Zitat Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.CrossRef Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.CrossRef
Zurück zum Zitat Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H. (2003). Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 34, 261–274.CrossRef Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H. (2003). Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 34, 261–274.CrossRef
Zurück zum Zitat Thornburg, J., Ensor, D. S., Rodos, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors - Part I: Model development and computer simulations. Aerosol Science and Technology, 34, 284–296. Thornburg, J., Ensor, D. S., Rodos, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors - Part I: Model development and computer simulations. Aerosol Science and Technology, 34, 284–296.
Zurück zum Zitat Tung, T. C. W., Chao, C. Y. H., & Burnett, J. (1999). A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 33, 881–893.CrossRef Tung, T. C. W., Chao, C. Y. H., & Burnett, J. (1999). A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 33, 881–893.CrossRef
Zurück zum Zitat Vanmarcke, H., Landsheere, C., Van Dingenen, R., & Poffijn, A. (1991). Influence of turbulence on the deposition rate constant of the unattached radon decay products. Aerosol Science and Technology, 14, 257–265.CrossRef Vanmarcke, H., Landsheere, C., Van Dingenen, R., & Poffijn, A. (1991). Influence of turbulence on the deposition rate constant of the unattached radon decay products. Aerosol Science and Technology, 14, 257–265.CrossRef
Zurück zum Zitat Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation. Atmospheric Environment (in press), corrected proof. Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation. Atmospheric Environment (in press), corrected proof.
Zurück zum Zitat Walton, G. N. (September 1997). CONTAM96 User manual. Report NSITIR 6056. Gaithersburg: US Department of Commerce, National Institute of Standards and Technology. Walton, G. N. (September 1997). CONTAM96 User manual. Report NSITIR 6056. Gaithersburg: US Department of Commerce, National Institute of Standards and Technology.
Zurück zum Zitat Wanner, H. U. (1993). Sources of pollutants in indoor air. IARC Scientific Publications, 109, 19–30. Wanner, H. U. (1993). Sources of pollutants in indoor air. IARC Scientific Publications, 109, 19–30.
Zurück zum Zitat Zhao, B., & Wu, J. (2006a). Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmospheric Environment, 40, 457–466.CrossRef Zhao, B., & Wu, J. (2006a). Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmospheric Environment, 40, 457–466.CrossRef
Zurück zum Zitat Zhao, B., & Wu, J. (2006b). Modeling particle deposition onto rough walls in ventilation duct. Atmospheric Environment, 40, 6918–6927.CrossRef Zhao, B., & Wu, J. (2006b). Modeling particle deposition onto rough walls in ventilation duct. Atmospheric Environment, 40, 6918–6927.CrossRef
Zurück zum Zitat Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34, 91–102.CrossRef Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34, 91–102.CrossRef
Zurück zum Zitat Abadie, M., Limam, K., Bouilly, J., & Génin, D. (2004). Particle pollution in the French high-speed train (TGV) smoker cars: Measurement and prediction of passengers exposure. Atmospheric Environment, 38, 2017–2027.CrossRef Abadie, M., Limam, K., Bouilly, J., & Génin, D. (2004). Particle pollution in the French high-speed train (TGV) smoker cars: Measurement and prediction of passengers exposure. Atmospheric Environment, 38, 2017–2027.CrossRef
Zurück zum Zitat Cheng, Y. S., Bechtold, W. E., Yu, C. C., & Hung, I. F. (1995). Incense smoke: Characterization and dynamics in indoor environments. Aerosological Science and Technology, 23, 271–281.CrossRef Cheng, Y. S., Bechtold, W. E., Yu, C. C., & Hung, I. F. (1995). Incense smoke: Characterization and dynamics in indoor environments. Aerosological Science and Technology, 23, 271–281.CrossRef
Zurück zum Zitat Chen, F., Yu, S. C. M., & Lai, A. C. K. (2006). Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment, 40, 357–367.CrossRef Chen, F., Yu, S. C. M., & Lai, A. C. K. (2006). Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment, 40, 357–367.CrossRef
Zurück zum Zitat Cole, C. (1998). Candle Soot deposition and its impacts on restorers, USA, Sentry Construction Company. Cole, C. (1998). Candle Soot deposition and its impacts on restorers, USA, Sentry Construction Company.
Zurück zum Zitat Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and Environmental Medicine, 58, 511–516.CrossRef Dennekamp, M., Howarth, S., Dick, C. A. J., Cherrie, J. W., Donaldson, K., & Seaton, A. (2001). Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occupational and Environmental Medicine, 58, 511–516.CrossRef
Zurück zum Zitat Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (1999). Characterization of fine particle emissions from burning church candles. Environmental Science and Technolology, 33, 2352–2362.CrossRef Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (1999). Characterization of fine particle emissions from burning church candles. Environmental Science and Technolology, 33, 2352–2362.CrossRef
Zurück zum Zitat Flückiger, B., Seifert, M., Koller, T., & Monn, C. (2000). Air quality measurements in a model kitchen using gas and electric stoves. Proceedings of Healthy Buildings 2000, 1, 567–572. Flückiger, B., Seifert, M., Koller, T., & Monn, C. (2000). Air quality measurements in a model kitchen using gas and electric stoves. Proceedings of Healthy Buildings 2000, 1, 567–572.
Zurück zum Zitat Helsper, C., Moltr, W., Loffler, F., Wadenpohl, C., Kaufmann, S., & Wenninger, G. (1993). Investigation of a non-aerosol generator for the production of carbon aggregate particles. Atmospheric Environment, 27A, 1271–1279. Helsper, C., Moltr, W., Loffler, F., Wadenpohl, C., Kaufmann, S., & Wenninger, G. (1993). Investigation of a non-aerosol generator for the production of carbon aggregate particles. Atmospheric Environment, 27A, 1271–1279.
Zurück zum Zitat Howard-Reed, C., Wallace, L. A., & Emmerich, S. J. (2003). Effect of ventilation system and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmospheric Environment, 37, 5295–5306.CrossRef Howard-Reed, C., Wallace, L. A., & Emmerich, S. J. (2003). Effect of ventilation system and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmospheric Environment, 37, 5295–5306.CrossRef
Zurück zum Zitat Hussein, T., Hämeri, K., Heikkinen, M. S. A., & Kulmala, M. (2005a). Indoor and outdoor particle size characterization at a family house in Espoo - Finland. Atmospheric Environment, 39, 3697–3709.CrossRef Hussein, T., Hämeri, K., Heikkinen, M. S. A., & Kulmala, M. (2005a). Indoor and outdoor particle size characterization at a family house in Espoo - Finland. Atmospheric Environment, 39, 3697–3709.CrossRef
Zurück zum Zitat Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.CrossRef Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.CrossRef
Zurück zum Zitat Kemens, R., Lee, C.-T., Wiener, R., & Leith, D. (1991). A study to characterize indoor particles in three non-smoking homes. Atmospheric Environment, 25A, 939–948. Kemens, R., Lee, C.-T., Wiener, R., & Leith, D. (1991). A study to characterize indoor particles in three non-smoking homes. Atmospheric Environment, 25A, 939–948.
Zurück zum Zitat Kleeman, M. J., Schauer, J. J., & Cass, G. R. (2000). Size and composition of fine particulate matter emitted from motor vehicles. Environmental Science and Technology, 34, 1132–1142.CrossRef Kleeman, M. J., Schauer, J. J., & Cass, G. R. (2000). Size and composition of fine particulate matter emitted from motor vehicles. Environmental Science and Technology, 34, 1132–1142.CrossRef
Zurück zum Zitat Klepeis, N. E., Apte, M. G., Gundel, L. A., Sextro, R. G., & Nazaroff, W. W. (2003). Determining size-specific emission factors for environmental tobacco smoke particles. Aerosological Science and Technology, 37, 780–790.CrossRef Klepeis, N. E., Apte, M. G., Gundel, L. A., Sextro, R. G., & Nazaroff, W. W. (2003). Determining size-specific emission factors for environmental tobacco smoke particles. Aerosological Science and Technology, 37, 780–790.CrossRef
Zurück zum Zitat Lai, A. C. K. (2004). Modeling of airborne particle exposure and effectiveness of engineering control strategies. Building and Environment, 39, 599–610.CrossRef Lai, A. C. K. (2004). Modeling of airborne particle exposure and effectiveness of engineering control strategies. Building and Environment, 39, 599–610.CrossRef
Zurück zum Zitat Li, W., & Hopke, P. K. (1993). Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosological Science and Technology, 19, 305–316.CrossRef Li, W., & Hopke, P. K. (1993). Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosological Science and Technology, 19, 305–316.CrossRef
Zurück zum Zitat Li, C. S., Lin, W. H., & Jenq, F. T. (1993). Size distributions of submicrometer aerosols from cooking. Environment International, 19, 147–154.CrossRef Li, C. S., Lin, W. H., & Jenq, F. T. (1993). Size distributions of submicrometer aerosols from cooking. Environment International, 19, 147–154.CrossRef
Zurück zum Zitat Lioy, P. J., Wainman, T., & Zhang, J. J. (1999). Typical household vacuum cleaners, the collection efficiency and emissions characteristics for fine particles. Journal of the Air and Waste Management Association, 49, 200–206. Lioy, P. J., Wainman, T., & Zhang, J. J. (1999). Typical household vacuum cleaners, the collection efficiency and emissions characteristics for fine particles. Journal of the Air and Waste Management Association, 49, 200–206.
Zurück zum Zitat Luoma, M., & Batterman, S. A. (2001). Characterization of particulate emissions from occupant activities in offices. Indoor Air, 11, 35–48.CrossRef Luoma, M., & Batterman, S. A. (2001). Characterization of particulate emissions from occupant activities in offices. Indoor Air, 11, 35–48.CrossRef
Zurück zum Zitat Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195–4203.CrossRef Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195–4203.CrossRef
Zurück zum Zitat Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environmental Science and Technology, 33, 1566–1577.CrossRef Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environmental Science and Technology, 33, 1566–1577.CrossRef
Zurück zum Zitat Siegmann, K., & Sattler, K. (1996). Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science, 27, 493–494.CrossRef Siegmann, K., & Sattler, K. (1996). Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science, 27, 493–494.CrossRef
Zurück zum Zitat Sohn, M. D., Lai, A., Smith, B. V., Sextro, R. G., Feustel, H. E., & Nazaroff, W. W. (1999). Modeling aerosol behavior in multizone indoor environments. Proceedings of Indoor Air’99 Edinburgh, 4, 785–790. Sohn, M. D., Lai, A., Smith, B. V., Sextro, R. G., Feustel, H. E., & Nazaroff, W. W. (1999). Modeling aerosol behavior in multizone indoor environments. Proceedings of Indoor Air’99 Edinburgh, 4, 785–790.
Zurück zum Zitat Schneider, T., Jensen, K. A., Clausen, P. A., Afshari, A., Gunnarsen, L., Wåhlin, P., et al. (2004). Prediction of indoor concentration of 0.5-4 mm particles of outdoor origin in an uninhabited apartment. Atmospheric Environment, 38, 6349–6359.CrossRef Schneider, T., Jensen, K. A., Clausen, P. A., Afshari, A., Gunnarsen, L., Wåhlin, P., et al. (2004). Prediction of indoor concentration of 0.5-4 mm particles of outdoor origin in an uninhabited apartment. Atmospheric Environment, 38, 6349–6359.CrossRef
Zurück zum Zitat Wallace, L. (2000). Real-time monitoring of particles, PAH, and CO in an occupied townhouse. Applied Occupational and Environmental Hygiene, 15, 39–47.CrossRef Wallace, L. (2000). Real-time monitoring of particles, PAH, and CO in an occupied townhouse. Applied Occupational and Environmental Hygiene, 15, 39–47.CrossRef
Zurück zum Zitat Wallace, L., & Howard-Reed, C. (2002). Continuous monitoring of ultrafine, fine and coarse particles in a residence for 18 months in 1999-2000. Journal of the Air and Waste Management Association, 52, 828–844. Wallace, L., & Howard-Reed, C. (2002). Continuous monitoring of ultrafine, fine and coarse particles in a residence for 18 months in 1999-2000. Journal of the Air and Waste Management Association, 52, 828–844.
Metadaten
Titel
Micro-environmental Modelling
verfasst von
Tareq Hussein
Markku Kulmala
Copyright-Jahr
2010
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-8663-1_8