Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Micro-NMR on CMOS for Biomolecular Sensing

verfasst von : Ka-Meng Lei, Nan Sun, Pui-In Mak, Rui Paulo Martins, Donhee Ham

Erschienen in: CMOS Circuits for Biological Sensing and Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we reported several portable nuclear magnetic resonance (NMR) systems implemented with silicon integrated circuits (IC). Being the initial researchers in the NMR on IC field, we firstly proposed to integrate the complex NMR electronics with the customized IC for portable NMR application with a palm size magnet. Moreover, to manage the samples inside the narrow opening of the portable magnet, we proposed the integration of the digital microfluidic device with the portable NMR system to attain electronic-automated multi-sample management scheme. With the capacitive sensing module of the droplets, the samples can be guided to the NMR sensing site sequentially to reduce labor and experimental time, which facilitates the detection and supports high-throughput sensing. Lastly, we demonstrates a NMR system with magnetic field calibration. This calibration culminates in a robust NMR sensing scheme by modulating the actual magnetic field to a steady value. Thus, the Larmor frequency can be stabilized, and the NMR sensing can work at different environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Brown, R.C. Semelka, MRI: Basic Principles and Applications, 4th edn. (Wiley-Blackwell, 2010) M.A. Brown, R.C. Semelka, MRI: Basic Principles and Applications, 4th edn. (Wiley-Blackwell, 2010)
2.
Zurück zum Zitat D. Canet, Nuclear Magnetic Resonance: Concepts and Methods (Wiley, New York, 1996) D. Canet, Nuclear Magnetic Resonance: Concepts and Methods (Wiley, New York, 1996)
3.
Zurück zum Zitat H. Gunther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (Weinheim, Germany, 1995) H. Gunther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (Weinheim, Germany, 1995)
4.
Zurück zum Zitat H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)CrossRef H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)CrossRef
5.
Zurück zum Zitat J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)CrossRef J.M. Perez, L. Josephson, T. O’Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002)CrossRef
6.
Zurück zum Zitat J.A. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990)CrossRef J.A. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990)CrossRef
7.
Zurück zum Zitat K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)CrossRef K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid State Circuits 52(1), 284–297 (2017)CrossRef
8.
Zurück zum Zitat K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016b), pp. 474–475, Feb 2016 K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, R.P. Martins, A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016b), pp. 474–475, Feb 2016
9.
Zurück zum Zitat K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016c)CrossRef K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016c)CrossRef
10.
Zurück zum Zitat K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015b)CrossRef K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015b)CrossRef
11.
Zurück zum Zitat K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2015c), pp. 1–4, 9–11 Nov 2015 K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) (2015c), pp. 1–4, 9–11 Nov 2015
12.
Zurück zum Zitat Y. Liu, N. Sun, H. Lee, R. Weissleder, D. Ham, CMOS mini nuclear magnetic resonance system and its application for biomolecular sensing, in 2008 IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 140–602, 3–7 Feb 2008 Y. Liu, N. Sun, H. Lee, R. Weissleder, D. Ham, CMOS mini nuclear magnetic resonance system and its application for biomolecular sensing, in 2008 IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 140–602, 3–7 Feb 2008
13.
Zurück zum Zitat N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)CrossRef N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)CrossRef
14.
Zurück zum Zitat N. Sun, T.J. Yoon, H. Lee, W. Andress, V. Demas, P. Prado, R. Weissleder, D. Ham, Palm NMR and one-chip NMR, in 2010 IEEE International Solid-State Circuits Conference – (ISSCC) (2010), pp. 488–489, 7–11 Feb 2010 N. Sun, T.J. Yoon, H. Lee, W. Andress, V. Demas, P. Prado, R. Weissleder, D. Ham, Palm NMR and one-chip NMR, in 2010 IEEE International Solid-State Circuits Conference – (ISSCC) (2010), pp. 488–489, 7–11 Feb 2010
15.
Zurück zum Zitat N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)CrossRef N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)CrossRef
16.
Zurück zum Zitat D. Ham, A. Hajimiri, Virtual damping and Einstein relation in oscillators. IEEE J. Solid State Circuits 38(3), 407–418 (2003)CrossRef D. Ham, A. Hajimiri, Virtual damping and Einstein relation in oscillators. IEEE J. Solid State Circuits 38(3), 407–418 (2003)CrossRef
17.
Zurück zum Zitat X. Li, W. Zhu, D. Ham, Phase diffusion and lamb-shift-like spectrum shift in classical oscillators. (2010a). arXiv:0908.2214v3 X. Li, W. Zhu, D. Ham, Phase diffusion and lamb-shift-like spectrum shift in classical oscillators. (2010a). arXiv:0908.2214v3
18.
Zurück zum Zitat X.F. Li, O.O. Yildirim, W.J. Zhu, D. Ham, Phase noise of distributed oscillators. IEEE Trans. Microwave Theory Tech. 58(8), 2105–2117 (2010b)CrossRef X.F. Li, O.O. Yildirim, W.J. Zhu, D. Ham, Phase noise of distributed oscillators. IEEE Trans. Microwave Theory Tech. 58(8), 2105–2117 (2010b)CrossRef
19.
Zurück zum Zitat D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976) D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)
20.
Zurück zum Zitat R. Gruetter, Automatic, localized in vivo adjustment of all 1st-order and 2nd-order shim coils. Magn. Reson. Med. 29(6), 804–811 (1993)CrossRef R. Gruetter, Automatic, localized in vivo adjustment of all 1st-order and 2nd-order shim coils. Magn. Reson. Med. 29(6), 804–811 (1993)CrossRef
21.
Zurück zum Zitat E. Danieli, J. Perlo, B. Blumich, F. Casanova, Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed. 49(24), 4133–4135 (2010)CrossRef E. Danieli, J. Perlo, B. Blumich, F. Casanova, Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed. 49(24), 4133–4135 (2010)CrossRef
22.
Zurück zum Zitat E. Danieli, J. Perlo, F. Casanova, B. Blümich, High-performance shimming with permanent magnets, in Magnetic Resonance Microscopy, 1st edn., (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009a), pp. 485–499 E. Danieli, J. Perlo, F. Casanova, B. Blümich, High-performance shimming with permanent magnets, in Magnetic Resonance Microscopy, 1st edn., (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009a), pp. 485–499
23.
Zurück zum Zitat E. Danieli, J. Mauler, J. Perlo, B. Blumich, F. Casanova, Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson. 198(1), 80–87 (2009b)CrossRef E. Danieli, J. Mauler, J. Perlo, B. Blumich, F. Casanova, Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson. 198(1), 80–87 (2009b)CrossRef
24.
Zurück zum Zitat H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRef H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)CrossRef
25.
Zurück zum Zitat S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)CrossRef S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 688–691 (1958)CrossRef
26.
Zurück zum Zitat B. Behnia, A.G. Webb, Limited-sample NMR using solenoidal microcoils perfluouocarbon plugs, and capillary spinning. Anal. Chem. 70(24), 5326–5331 (1998)CrossRef B. Behnia, A.G. Webb, Limited-sample NMR using solenoidal microcoils perfluouocarbon plugs, and capillary spinning. Anal. Chem. 70(24), 5326–5331 (1998)CrossRef
27.
Zurück zum Zitat D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270(5244), 1967–1970 (1995)CrossRef D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270(5244), 1967–1970 (1995)CrossRef
28.
Zurück zum Zitat F.D. Doty, Probe design and construction, in Encyclopedia of Magnetic Resonance, (Wiley, New York, 2007) F.D. Doty, Probe design and construction, in Encyclopedia of Magnetic Resonance, (Wiley, New York, 2007)
29.
Zurück zum Zitat A.P.M. Kentgens, J. Bart, P.J.M. van Bentum, A. Brinkmann, E.R.H. Van Eck, J.G.E. Gardeniers, J.W.G. Janssen, P. Knijn, S. Vasa, M.H.W. Verkuijlen, High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys. 128(5) (2008) A.P.M. Kentgens, J. Bart, P.J.M. van Bentum, A. Brinkmann, E.R.H. Van Eck, J.G.E. Gardeniers, J.W.G. Janssen, P. Knijn, S. Vasa, M.H.W. Verkuijlen, High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys. 128(5) (2008)
30.
Zurück zum Zitat K.R. Minard, R.A. Wind, Solenoidal microcoil design – part II: optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson. 13(3), 190–210 (2001a)CrossRef K.R. Minard, R.A. Wind, Solenoidal microcoil design – part II: optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson. 13(3), 190–210 (2001a)CrossRef
31.
Zurück zum Zitat K.R. Minard, R.A. Wind, Solenoidal microcoil design. Part I: optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson. 13(2), 128–142 (2001b)CrossRef K.R. Minard, R.A. Wind, Solenoidal microcoil design. Part I: optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson. 13(2), 128–142 (2001b)CrossRef
32.
Zurück zum Zitat R.M. Fratila, A.H. Velders, Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 4(1), 227–249 (2011)CrossRef R.M. Fratila, A.H. Velders, Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 4(1), 227–249 (2011)CrossRef
33.
Zurück zum Zitat C.J. Jones, C.K. Larive, Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 402(1), 61–68 (2012)CrossRef C.J. Jones, C.K. Larive, Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 402(1), 61–68 (2012)CrossRef
34.
Zurück zum Zitat C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, R.S. Popovic, Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 164(2), 242–255 (2003)CrossRef C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, A. Daridon, E. Verpoorte, N.F. de Rooij, R.S. Popovic, Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 164(2), 242–255 (2003)CrossRef
35.
Zurück zum Zitat C. Massin, C. Azevedo, N. Beckmann, P.A. Besse, R.S. Popovic, Magnetic resonance imaging using microfabricated planar coils, in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (2002), pp. 199–204 C. Massin, C. Azevedo, N. Beckmann, P.A. Besse, R.S. Popovic, Magnetic resonance imaging using microfabricated planar coils, in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (2002), pp. 199–204
36.
Zurück zum Zitat C. Massin, A. Daridon, F. Vincent, G. Boero, P.-A. Besse, E. Verpoorte, N.F. de Rooij, R.S. Popovic, A microfabricated probe with integrated coils and channels for on-chip NMR spectroscopy, in Micro Total Analysis Systems 2001: Proceedings of the μTAS 2001 Symposium, Held in Monterey, 1st edn., ed. by J. M. Ramsey, A. van den Berg (Springer, Dordrecht, 2001), pp. 438–440, 21–25 Oct 2001 C. Massin, A. Daridon, F. Vincent, G. Boero, P.-A. Besse, E. Verpoorte, N.F. de Rooij, R.S. Popovic, A microfabricated probe with integrated coils and channels for on-chip NMR spectroscopy, in Micro Total Analysis Systems 2001: Proceedings of the μTAS 2001 Symposium, Held in Monterey, 1st edn., ed. by J. M. Ramsey, A. van den Berg (Springer, Dordrecht, 2001), pp. 438–440, 21–25 Oct 2001
37.
Zurück zum Zitat H. Ryan, S.H. Song, A. Zass, J. Korvink, M. Utz, Contactless NMR spectroscopy on a chip. Anal. Chem. 84(8), 3696–3702 (2012)CrossRef H. Ryan, S.H. Song, A. Zass, J. Korvink, M. Utz, Contactless NMR spectroscopy on a chip. Anal. Chem. 84(8), 3696–3702 (2012)CrossRef
38.
Zurück zum Zitat J. Anders, G. Chiaramonte, P. SanGiorgio, G. Boero, A single-chip array of NMR receivers. J. Magn. Reson. 201(2), 239–249 (2009)CrossRef J. Anders, G. Chiaramonte, P. SanGiorgio, G. Boero, A single-chip array of NMR receivers. J. Magn. Reson. 201(2), 239–249 (2009)CrossRef
39.
Zurück zum Zitat V. Badilita, K. Kratt, N. Baxan, J. Anders, D. Elverfeldt, G. Boero, J. Hennig, J.G. Korvink, U. Wallrabe, 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (2011), pp. 809–812, 23–27 Jan 2011 V. Badilita, K. Kratt, N. Baxan, J. Anders, D. Elverfeldt, G. Boero, J. Hennig, J.G. Korvink, U. Wallrabe, 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (2011), pp. 809–812, 23–27 Jan 2011
40.
Zurück zum Zitat D.I. Hoult, The NMR receiver: a description and analysis of design. Prog. Nucl. Magn. Reson. Spectrosc. 12(1), 41–77 (1978)CrossRef D.I. Hoult, The NMR receiver: a description and analysis of design. Prog. Nucl. Magn. Reson. Spectrosc. 12(1), 41–77 (1978)CrossRef
41.
Zurück zum Zitat H. Lee, T.J. Yoon, J.L. Figueiredo, F.K. Swirski, R. Weissleder, Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. 106(30), 12459–12464 (2009)CrossRef H. Lee, T.J. Yoon, J.L. Figueiredo, F.K. Swirski, R. Weissleder, Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. 106(30), 12459–12464 (2009)CrossRef
42.
Zurück zum Zitat J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, Integrating microfabricated fluidic systems and NMR spectroscopy. I.E.E.E. Trans. Biomed. Eng. 47(1), 3–7 (2000)CrossRef J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, Integrating microfabricated fluidic systems and NMR spectroscopy. I.E.E.E. Trans. Biomed. Eng. 47(1), 3–7 (2000)CrossRef
43.
Zurück zum Zitat I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8(4), 519–526 (2008)CrossRef I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8(4), 519–526 (2008)CrossRef
44.
Zurück zum Zitat J. Gao, X.M. Liu, T.L. Chen, P.I. Mak, Y.G. Du, M.I. Vai, B.C. Lin, R.P. Martins, An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13(3), 443–451 (2013)CrossRef J. Gao, X.M. Liu, T.L. Chen, P.I. Mak, Y.G. Du, M.I. Vai, B.C. Lin, R.P. Martins, An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13(3), 443–451 (2013)CrossRef
45.
Zurück zum Zitat F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab Chip 14(18), 3589–3593 (2014)CrossRef F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab Chip 14(18), 3589–3593 (2014)CrossRef
46.
Zurück zum Zitat M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef
47.
Zurück zum Zitat M.H. Shamsi, K. Choi, A.H.C. Ng, A.R. Wheeler, A digital microfluidic electrochemical immunoassay. Lab Chip 14(3), 547–554 (2014)CrossRef M.H. Shamsi, K. Choi, A.H.C. Ng, A.R. Wheeler, A digital microfluidic electrochemical immunoassay. Lab Chip 14(3), 547–554 (2014)CrossRef
48.
Zurück zum Zitat V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)CrossRef V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)CrossRef
49.
Zurück zum Zitat A.R. Wheeler, Chemistry – putting electrowetting to work. Science 322(5901), 539–540 (2008)CrossRef A.R. Wheeler, Chemistry – putting electrowetting to work. Science 322(5901), 539–540 (2008)CrossRef
50.
Zurück zum Zitat I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)CrossRef I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)CrossRef
51.
Zurück zum Zitat G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.-J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12), 1732–1739 (2009)CrossRef G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.-J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12), 1732–1739 (2009)CrossRef
52.
Zurück zum Zitat Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 8(3), 215–225 (2006)CrossRef Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 8(3), 215–225 (2006)CrossRef
53.
Zurück zum Zitat Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)CrossRef Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)CrossRef
54.
Zurück zum Zitat R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRef R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRef
55.
Zurück zum Zitat D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)CrossRef D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)CrossRef
56.
Zurück zum Zitat P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, T. Mattsson, A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE J. Solid State Circuits 46(7), 1618–1626 (2011)CrossRef P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, T. Mattsson, A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE J. Solid State Circuits 46(7), 1618–1626 (2011)CrossRef
57.
Zurück zum Zitat T. Mattsson, Method of and inductor layout for reduced VCO coupling. U.S. Patent 7,151,430, 19 Dec 2006 T. Mattsson, Method of and inductor layout for reduced VCO coupling. U.S. Patent 7,151,430, 19 Dec 2006
58.
Zurück zum Zitat M. Nagata, H. Masuoka, S.I. Fukase, M. Kikuta, M. Morita, N. Itoh, 5.8 GHz RF transceiver LSI including on-chip matching circuits, in Bipolar/BiCMOS Circuits and Technology Meeting (2006), pp. 263–266, Oct 2006 M. Nagata, H. Masuoka, S.I. Fukase, M. Kikuta, M. Morita, N. Itoh, 5.8 GHz RF transceiver LSI including on-chip matching circuits, in Bipolar/BiCMOS Circuits and Technology Meeting (2006), pp. 263–266, Oct 2006
59.
Zurück zum Zitat F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter 17(28), R705–R774 (2005)CrossRef F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter 17(28), R705–R774 (2005)CrossRef
60.
Zurück zum Zitat J. Gong, C.J. Kim, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6), 898–906 (2008)CrossRef J. Gong, C.J. Kim, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6), 898–906 (2008)CrossRef
61.
Zurück zum Zitat W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 83(9) (2012) W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 83(9) (2012)
62.
Zurück zum Zitat J.M. Pope, N. Repin, A simple approach to T2 imaging in MRI. Magn. Reson. Imaging 6(6), 641–646 (1988)CrossRef J.M. Pope, N. Repin, A simple approach to T2 imaging in MRI. Magn. Reson. Imaging 6(6), 641–646 (1988)CrossRef
63.
Zurück zum Zitat D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. 111(33), 11955–11960 (2014)CrossRef D. Ha, J. Paulsen, N. Sun, Y.Q. Song, D. Ham, Scalable NMR spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci. 111(33), 11955–11960 (2014)CrossRef
64.
Zurück zum Zitat E. Kupce, R. Freeman, Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206(1), 147–153 (2010)CrossRef E. Kupce, R. Freeman, Molecular structure from a single NMR sequence (fast-PANACEA). J. Magn. Reson. 206(1), 147–153 (2010)CrossRef
65.
Zurück zum Zitat G.A. Morris, H. Barjat, T.J. Horne, Reference deconvolution methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(1), 197–257 (1997)CrossRef G.A. Morris, H. Barjat, T.J. Horne, Reference deconvolution methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(1), 197–257 (1997)CrossRef
66.
Zurück zum Zitat H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)MathSciNetCrossRef H. Heidari, E. Bonizzoni, U. Gatti, F. Maloberti, A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)MathSciNetCrossRef
67.
Zurück zum Zitat J. Jiang, K. Makinwa, A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016), pp. 204–205, Feb 2016 J. Jiang, K. Makinwa, A hybrid multipath CMOS magnetic sensor with 210μTrms resolution and 3MHz bandwidth for contactless current sensing, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016), pp. 204–205, Feb 2016
68.
Zurück zum Zitat J.F. Jiang, W.J. Kindt, K.A.A. Makinwa, A continuous-time ripple reduction technique for spinning-current hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)CrossRef J.F. Jiang, W.J. Kindt, K.A.A. Makinwa, A continuous-time ripple reduction technique for spinning-current hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)CrossRef
69.
Zurück zum Zitat C. Sander, M.C. Vecchi, M. Cornils, O. Paul, From three-contact vertical hall elements to symmetrized vertical hall sensors with low offset. Sens Actuators, A 240, 92–102 (2016)CrossRef C. Sander, M.C. Vecchi, M. Cornils, O. Paul, From three-contact vertical hall elements to symmetrized vertical hall sensors with low offset. Sens Actuators, A 240, 92–102 (2016)CrossRef
70.
Zurück zum Zitat G.M. Sung, C.P. Yu, 2-D differential folded vertical hall device fabricated on a p-type substrate using CMOS technology. IEEE Sensors J. 13(6), 2253–2262 (2013)CrossRef G.M. Sung, C.P. Yu, 2-D differential folded vertical hall device fabricated on a p-type substrate using CMOS technology. IEEE Sensors J. 13(6), 2253–2262 (2013)CrossRef
71.
Zurück zum Zitat M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans. Biomed. Circuits Syst. 8(2), 278–292 (2014)CrossRef M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, Noise limits of CMOS current interfaces for biosensors: a review. IEEE Trans. Biomed. Circuits Syst. 8(2), 278–292 (2014)CrossRef
72.
Zurück zum Zitat D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)CrossRef D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)CrossRef
73.
Zurück zum Zitat K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, Exploring the noise limits of fully-differential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2015a), pp. 290–293, June 2015 K.-M. Lei, H. Heidari, P.-I. Mak, M.-K. Law, F. Maloberti, Exploring the noise limits of fully-differential micro-watt transimpedance amplifiers for Sub-pA/√Hz sensitivity, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2015a), pp. 290–293, June 2015
74.
Zurück zum Zitat L.K. Lee, S. Choi, J.O. Lee, Yoon JB, Cho GH (2012) CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection, in 2012 IEEE International Solid-State Circuits Conference, pp. 120–122, Feb 2012 L.K. Lee, S. Choi, J.O. Lee, Yoon JB, Cho GH (2012) CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection, in 2012 IEEE International Solid-State Circuits Conference, pp. 120–122, Feb 2012
75.
Zurück zum Zitat A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010)CrossRef A. Manickam, A. Chevalier, M. McDermott, A.D. Ellington, A. Hassibi, A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4(6), 379–390 (2010)CrossRef
76.
Zurück zum Zitat T.C.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 0.18-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuits 44(5), 1644–1654 (2009)CrossRef T.C.D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, K.L. Shepard, A 0.18-μm CMOS array sensor for integrated time-resolved fluorescence detection. IEEE J. Solid State Circuits 44(5), 1644–1654 (2009)CrossRef
77.
Zurück zum Zitat H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)CrossRef H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)CrossRef
78.
Zurück zum Zitat K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, CMOS biosensors for in vitro diagnosis – transducing mechanisms and applications. Lab Chip 16, 3664–3681 (2016a) K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, CMOS biosensors for in vitro diagnosis – transducing mechanisms and applications. Lab Chip 16, 3664–3681 (2016a)
79.
Zurück zum Zitat J. Anders, P. SanGiorgio, G. Boero, A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson. 209(1), 1–7 (2011)CrossRef J. Anders, P. SanGiorgio, G. Boero, A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson. 209(1), 1–7 (2011)CrossRef
80.
Zurück zum Zitat J. Handwerker, M. Eder, M. Tibiletti, V. Rasche, K. Scheffler, J. Becker, M. Ortmanns, J. Anders, An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping, in 42nd European Solid-State Circuits Conference (2016b), pp. 217–220, 12–15 Sept 2016 J. Handwerker, M. Eder, M. Tibiletti, V. Rasche, K. Scheffler, J. Becker, M. Ortmanns, J. Anders, An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping, in 42nd European Solid-State Circuits Conference (2016b), pp. 217–220, 12–15 Sept 2016
81.
Zurück zum Zitat M.J.N. Junk, Electron paramagnetic resonance theory, in Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy, (Springer, Berlin/Heidelberg, 2012), pp. 7–52CrossRef M.J.N. Junk, Electron paramagnetic resonance theory, in Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy, (Springer, Berlin/Heidelberg, 2012), pp. 7–52CrossRef
82.
Zurück zum Zitat J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, J. Anders, A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13μm CMOS ASIC, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016a), pp. 476–477, 31 Jan–4 Feb 2016 J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, J. Anders, A 14GHz battery-operated point-of-care ESR spectrometer based on a 0.13μm CMOS ASIC, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016a), pp. 476–477, 31 Jan–4 Feb 2016
83.
Zurück zum Zitat X. Yang, A. Babakhani, A full-duplex single-chip transceiver with self-interference cancellation in 0.13μm SiGe BiCMOS for electron paramagnetic resonance spectroscopy. IEEE J. Solid State Circuits 51(10), 2408–2419 (2016)CrossRef X. Yang, A. Babakhani, A full-duplex single-chip transceiver with self-interference cancellation in 0.13μm SiGe BiCMOS for electron paramagnetic resonance spectroscopy. IEEE J. Solid State Circuits 51(10), 2408–2419 (2016)CrossRef
84.
Zurück zum Zitat X. Yang, A. Babakhani, A single-chip electron paramagnetic resonance transceiver in 0.13-μm SiGe BiCMOS. IEEE Trans. Microwave Theory Tech. 63(11), 3727–3735 (2015)CrossRef X. Yang, A. Babakhani, A single-chip electron paramagnetic resonance transceiver in 0.13-μm SiGe BiCMOS. IEEE Trans. Microwave Theory Tech. 63(11), 3727–3735 (2015)CrossRef
Metadaten
Titel
Micro-NMR on CMOS for Biomolecular Sensing
verfasst von
Ka-Meng Lei
Nan Sun
Pui-In Mak
Rui Paulo Martins
Donhee Ham
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67723-1_5

Neuer Inhalt