Skip to main content

2014 | OriginalPaper | Buchkapitel

31. Micro Pump Driven by a Pair of Conducting Polymer Soft Actuators

verfasst von : Masaki Fuchiwaki

Erschienen in: Soft Actuators

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micro pumps are regarded as key components of many MEMS devices. They are widely used in the fluid operations systems of fields ranging from chemistry and biotechnology to mechanical engineering. The micro pumps developed to present generally incorporate piezoelectric-element, thermopneumatic, electrostatic, electromagnetic, electroosmotic, electromagnetic-fluid, and various other drives, but along with their reduced size they have increased in component number and structural complexity. The conducting polymer soft actuator based on polypyrrole opens widely and closes completely as a result of electrochemical oxidation and reduction, respectively. The opening and closing movement of the soft actuator, inside which the cation-driven layer is arranged, becomes large because the anion-driven layer that is arranged outside is the predominant driver. We developed a micro pump that is driven by a pair of conducting polymer soft actuator based on polypyrrole and clarified the fundamental characteristics and transport mechanism of the micro pump. The proposed micro pump can transport fluids unidirectionally without backflow by means of a pair of conducting polymer soft actuators that open and close. Furthermore, a wider range of flow rates and a greater maximum delivery head was obtained with the proposed micro pump. The energy consumption rate of the proposed micro pump is dramatically lower than the energy consumption rates of conventional micro pumps because the conducting polymer soft actuator can be driven with a low voltage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Teymoori MM, Ebrahim AS (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A 117:222–229CrossRef Teymoori MM, Ebrahim AS (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A 117:222–229CrossRef
2.
Zurück zum Zitat Jeong OC, Konishi S (2007) Fabrication and drive test of pneumatic PDMS micro pump. Sens Actuators A 135:849–856CrossRef Jeong OC, Konishi S (2007) Fabrication and drive test of pneumatic PDMS micro pump. Sens Actuators A 135:849–856CrossRef
3.
Zurück zum Zitat Nguyen N, Huang X, Chuan TK (2002) MEMS-micropumps: a review. ASME J Fluids Eng 124:385–392CrossRef Nguyen N, Huang X, Chuan TK (2002) MEMS-micropumps: a review. ASME J Fluids Eng 124:385–392CrossRef
4.
Zurück zum Zitat Lee CJ, Tu KZ, Lei U, Hsu CJ, Sheen HJ (2005) A valveless micropump with asymmetric Obstacles. In: Proceedings of the 16th international symposium on transport phenomena, Prague, 2005 Lee CJ, Tu KZ, Lei U, Hsu CJ, Sheen HJ (2005) A valveless micropump with asymmetric Obstacles. In: Proceedings of the 16th international symposium on transport phenomena, Prague, 2005
5.
Zurück zum Zitat Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene. J Am Chem Soc 100:1013–1021CrossRef Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene. J Am Chem Soc 100:1013–1021CrossRef
6.
Zurück zum Zitat Nigrey PJ, MacDiarmid AG, Heeger AJ (1979) Electrochemistry of polyacetylene, (CH)x: electrochemical doping of (CH)x films to the metallic state. J Am Chem Soc Chem Commun 594–595 Nigrey PJ, MacDiarmid AG, Heeger AJ (1979) Electrochemistry of polyacetylene, (CH)x: electrochemical doping of (CH)x films to the metallic state. J Am Chem Soc Chem Commun 594–595
7.
Zurück zum Zitat Otero TF, Broschart M (2006) Polypyrrole artificial muscles: a new rhombic element. Construction and electrochemomechanical characterization. J Appl Electrochem 36:205–214CrossRef Otero TF, Broschart M (2006) Polypyrrole artificial muscles: a new rhombic element. Construction and electrochemomechanical characterization. J Appl Electrochem 36:205–214CrossRef
8.
Zurück zum Zitat Otero TF, Martínez JG (2012) Artificial muscles: a tool to quantify exchanged solvent during biomimetic reactions. Chem Mater 24:4093–4099CrossRef Otero TF, Martínez JG (2012) Artificial muscles: a tool to quantify exchanged solvent during biomimetic reactions. Chem Mater 24:4093–4099CrossRef
9.
Zurück zum Zitat Otero TF, Martínez JG, Zaifoglu B (2013) Using reactive artificial muscles to determine water exchange during reactions. Smart Mater Struct 22:104019CrossRef Otero TF, Martínez JG, Zaifoglu B (2013) Using reactive artificial muscles to determine water exchange during reactions. Smart Mater Struct 22:104019CrossRef
10.
Zurück zum Zitat Otero TF, Alfaro M, Martinez V, Perez MA, Martinez JG (2013) Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. Coulovoltammetric results from films on metals revisited. Adv Funct Mater 23:3929–3940CrossRef Otero TF, Alfaro M, Martinez V, Perez MA, Martinez JG (2013) Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. Coulovoltammetric results from films on metals revisited. Adv Funct Mater 23:3929–3940CrossRef
11.
Zurück zum Zitat Baughman RH (1991) Conducting polymers in redox devices and intelligent materials systems. Makromol Chem Macromol Symp 51:193–215CrossRef Baughman RH (1991) Conducting polymers in redox devices and intelligent materials systems. Makromol Chem Macromol Symp 51:193–215CrossRef
12.
Zurück zum Zitat Otero TF, Rodriguez J, Angulo E, Santamaria C (1993) Artificial muscles from bilayer structures. Synth Met 57:3713–3723CrossRef Otero TF, Rodriguez J, Angulo E, Santamaria C (1993) Artificial muscles from bilayer structures. Synth Met 57:3713–3723CrossRef
13.
Zurück zum Zitat Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef
14.
Zurück zum Zitat Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353CrossRef Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353CrossRef
15.
Zurück zum Zitat Otero TF, Sansihena JM (1997) Bilayer dimensions and movement in artificial muscles. Bioelectrnchem Bioenerg 42:117–122CrossRef Otero TF, Sansihena JM (1997) Bilayer dimensions and movement in artificial muscles. Bioelectrnchem Bioenerg 42:117–122CrossRef
16.
Zurück zum Zitat Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimisation of a polypyrrole based actuator. Synth Met 85:1419–1420CrossRef Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimisation of a polypyrrole based actuator. Synth Met 85:1419–1420CrossRef
17.
Zurück zum Zitat Careema MA, Vidanapathirana KP, Skaarup S, West K (2004) Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ion 175:725–728CrossRef Careema MA, Vidanapathirana KP, Skaarup S, West K (2004) Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ion 175:725–728CrossRef
18.
Zurück zum Zitat Smela E, Lu W, Mattes BR (2005) Polyaniline actuators: Part 1. PANI(AMPS) in HCl. Synth Met 151:25–42CrossRef Smela E, Lu W, Mattes BR (2005) Polyaniline actuators: Part 1. PANI(AMPS) in HCl. Synth Met 151:25–42CrossRef
19.
Zurück zum Zitat Spinks GM, Truong VT (2005) Work-per-cycle analysis for electromechanical actuators. Sensor Actuators A 119:455–461CrossRef Spinks GM, Truong VT (2005) Work-per-cycle analysis for electromechanical actuators. Sensor Actuators A 119:455–461CrossRef
20.
Zurück zum Zitat Madden JD, Cush RA, Kanigan TS, Brenan CJ, Hunter IW (1999) Encapsulated polypyrrole actuators. Synth Met 105:61–64CrossRef Madden JD, Cush RA, Kanigan TS, Brenan CJ, Hunter IW (1999) Encapsulated polypyrrole actuators. Synth Met 105:61–64CrossRef
21.
Zurück zum Zitat Hutchison S, Lewis TW, Moulton SE, Spinks GM, Wallace GG (2000) Development of polypyrrole-based electromechanical actuators. Synth Met 113:121–127CrossRef Hutchison S, Lewis TW, Moulton SE, Spinks GM, Wallace GG (2000) Development of polypyrrole-based electromechanical actuators. Synth Met 113:121–127CrossRef
22.
Zurück zum Zitat Fuchiwaki M, Takashima W, Kaneto K (2001) Comparative study of electrochemomechanical deformations of poly(3-alkylthiophene)s, polyanilines and polypyrrole films. Jpn J Appl Phys 40:7110–7116CrossRef Fuchiwaki M, Takashima W, Kaneto K (2001) Comparative study of electrochemomechanical deformations of poly(3-alkylthiophene)s, polyanilines and polypyrrole films. Jpn J Appl Phys 40:7110–7116CrossRef
23.
Zurück zum Zitat Bay L, West K, Skaarup S (2002) Pentanol as co-surfactant in polypyrrole actuators. Polymer 43:3527–3532CrossRef Bay L, West K, Skaarup S (2002) Pentanol as co-surfactant in polypyrrole actuators. Polymer 43:3527–3532CrossRef
24.
Zurück zum Zitat Otero TF (2013) Reactions drive conformations. Biomimetic properties and devices, theoretical description. J Mater Chem B 1:3754–3767CrossRef Otero TF (2013) Reactions drive conformations. Biomimetic properties and devices, theoretical description. J Mater Chem B 1:3754–3767CrossRef
25.
Zurück zum Zitat Otero TF, Martinez JG (2013) Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv Funct Mater 23:404–416CrossRef Otero TF, Martinez JG (2013) Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv Funct Mater 23:404–416CrossRef
26.
Zurück zum Zitat Kaneto K, Sonoda Y, Takashima W (2000) Direct measurement and mechanism of electro-chemomechanical expansion and contraction in polypyrrole films. Jpn J Appl Phys 39:5918–5926CrossRef Kaneto K, Sonoda Y, Takashima W (2000) Direct measurement and mechanism of electro-chemomechanical expansion and contraction in polypyrrole films. Jpn J Appl Phys 39:5918–5926CrossRef
27.
Zurück zum Zitat Ramirez GS, Diamond D (2006) Biomimetic, low power pumps based on soft actuators. Sens Actuators A 135:229–235CrossRef Ramirez GS, Diamond D (2006) Biomimetic, low power pumps based on soft actuators. Sens Actuators A 135:229–235CrossRef
28.
Zurück zum Zitat Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511–1516CrossRef Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511–1516CrossRef
29.
Zurück zum Zitat Fuchiwaki M, Tanaka K, Kaneto K (2009) Planate conducting polymer actuator based on polypyrrole and its application. Sens Actuators A 150:272–276CrossRef Fuchiwaki M, Tanaka K, Kaneto K (2009) Planate conducting polymer actuator based on polypyrrole and its application. Sens Actuators A 150:272–276CrossRef
30.
Zurück zum Zitat Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517CrossRef Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517CrossRef
31.
Zurück zum Zitat Hara S, Zama T, Takashima W, Kaneto K (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36:151–161CrossRef Hara S, Zama T, Takashima W, Kaneto K (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36:151–161CrossRef
32.
Zurück zum Zitat Hara S, Zama T, Takashima W, Kaneto K (2004) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36:933–936CrossRef Hara S, Zama T, Takashima W, Kaneto K (2004) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36:933–936CrossRef
33.
Zurück zum Zitat Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) Enhancement in electrochemical strain of a polypyrrole–metal composite film actuator. J Mater Chem 14:2724–2725CrossRef Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) Enhancement in electrochemical strain of a polypyrrole–metal composite film actuator. J Mater Chem 14:2724–2725CrossRef
34.
Zurück zum Zitat Santra S, Holloway P, Batich CD (2002) Fabrication and testing of a magnetically actuated micropump. Sens Actuators B 87:358–364CrossRef Santra S, Holloway P, Batich CD (2002) Fabrication and testing of a magnetically actuated micropump. Sens Actuators B 87:358–364CrossRef
35.
Zurück zum Zitat Ling SJ, Yuan JL, Sung JL, Yi CH, Wu SY, Mi CT, Ching CH (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9:185–194CrossRef Ling SJ, Yuan JL, Sung JL, Yi CH, Wu SY, Mi CT, Ching CH (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9:185–194CrossRef
36.
Zurück zum Zitat Geipel A, Goldschmidtboing F, Doll A, Jantscheff P, Esser N, Massing U, Woias P (2008) An implantable active Microport based on a self-priming high-performance two-stage micropump. Sens Actuators A 145:414–422CrossRef Geipel A, Goldschmidtboing F, Doll A, Jantscheff P, Esser N, Massing U, Woias P (2008) An implantable active Microport based on a self-priming high-performance two-stage micropump. Sens Actuators A 145:414–422CrossRef
Metadaten
Titel
Micro Pump Driven by a Pair of Conducting Polymer Soft Actuators
verfasst von
Masaki Fuchiwaki
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_31

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.