Skip to main content

2017 | OriginalPaper | Buchkapitel

Microalgae for Biofuels: Applications, Process Constraints and Future Needs

verfasst von : Faiz Ahmad Ansari, Ajam Yakub Shekh, Sanjay Kumar Gupta, Faizal Bux

Erschienen in: Algal Biofuels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microalgae are eukaryotic (e.g. green algae, diatoms) photosynthetic organisms capable of utilizing carbon dioxide and light for the synthesis of carbohydrates as energy compounds. They have been known since many years, but their large-scale cultivation has started a few decades ago. They have the potential to grow in open systems such as raceway ponds, circular ponds and lakes and also in controlled condition like closed photobioreactors. Microalgae are advantageous considering their higher productivity than terrestrial oilseed plants and ease of cultivation in wastewater and saline water. Microalgae do not compete with agricultural land for cultivation. They have dual role such as utilization of CO2 from atmosphere as well as remediation of wastewater by utilizing nutrients from wastewater to grow into biomass. Microalgae contain different types of major metabolites and high-value products such as proteins, lipids, carbohydrates, vitamins, pigments, antioxidants, minerals, etc. (Gupta et al. 2016; Mata et al. 2010; Rawat et al. 2011; Shriwastav et al. 2014; Francavilla et al. 2015). Their major metabolites are rich in essential amino acids and essential fatty acids, e.g. omega-3 fatty acids. Productivity of these major metabolites can be increased through mode of cultivation and nutrient limitation/stresses. Commonly, the lipids from microalgae are converted into biodiesel by the process of transesterification. After lipid extraction, a huge amount of residual biomass is left that is known as lipid-extracted algae (LEA). LEA still contains the high-value metabolites like proteins and carbohydrates in residual biomass (Ansari et al. 2015; Ju et al. 2012). Lipid-extracted algae can also serve as a good resource for biomethane, bioethanol and syngas production. In addition, protein fraction of LEA has promising potential as food and feed additive for animal and aquaculture. LEA biomass due to rich nitrogen content can also be employed as a fertilizer. Therefore, considering the rich chemical composition of microalgae, it can be considered as a good feedstock for the biorefinery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593CrossRef Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593CrossRef
Zurück zum Zitat Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410CrossRef Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410CrossRef
Zurück zum Zitat Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564CrossRef Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564CrossRef
Zurück zum Zitat Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2(2):164–173CrossRef Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2(2):164–173CrossRef
Zurück zum Zitat BCC-Research, 2011, The Global Market for Carotenoids; 2011 BCC-Research, 2011, The Global Market for Carotenoids; 2011
Zurück zum Zitat Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210CrossRef Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210CrossRef
Zurück zum Zitat Beneroso D, Bermudez JM, Arenillas A, Menendez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246CrossRef Beneroso D, Bermudez JM, Arenillas A, Menendez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246CrossRef
Zurück zum Zitat Bohutskyi P, Chow S, Ketter B, Betenbaugh MJ, Bouwer EJ (2015) Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion. Appl Energy 154:718–731CrossRef Bohutskyi P, Chow S, Ketter B, Betenbaugh MJ, Bouwer EJ (2015) Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion. Appl Energy 154:718–731CrossRef
Zurück zum Zitat Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776CrossRef Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776CrossRef
Zurück zum Zitat Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577CrossRef Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577CrossRef
Zurück zum Zitat Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101(17):6768–6777CrossRef Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101(17):6768–6777CrossRef
Zurück zum Zitat Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686 Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686
Zurück zum Zitat Caporgno MP, Olkiewicz M, Pruvost J, Lepine O, Legrand J, Font J, Bengoa C (2016) A novel pre-treatment for the methane production from microalgae by using N-methylmorpholine-N-oxide (NMMO). Bioresour Technol 201:370–373CrossRef Caporgno MP, Olkiewicz M, Pruvost J, Lepine O, Legrand J, Font J, Bengoa C (2016) A novel pre-treatment for the methane production from microalgae by using N-methylmorpholine-N-oxide (NMMO). Bioresour Technol 201:370–373CrossRef
Zurück zum Zitat Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRef Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRef
Zurück zum Zitat Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140:14–19CrossRef Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140:14–19CrossRef
Zurück zum Zitat Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrog Energy 36(19):12211–12219CrossRef Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrog Energy 36(19):12211–12219CrossRef
Zurück zum Zitat Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP, Tien SY, Chen SY, Chang JS, Lee WJ (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385CrossRef Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP, Tien SY, Chen SY, Chang JS, Lee WJ (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385CrossRef
Zurück zum Zitat Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105CrossRef Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105CrossRef
Zurück zum Zitat Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRef Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRef
Zurück zum Zitat Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214CrossRef Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214CrossRef
Zurück zum Zitat Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838CrossRef Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838CrossRef
Zurück zum Zitat Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101(14):5330–5336CrossRef Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101(14):5330–5336CrossRef
Zurück zum Zitat D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev 58:832–841CrossRef D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sust Energ Rev 58:832–841CrossRef
Zurück zum Zitat Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Technol 198:316–324CrossRef Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Technol 198:316–324CrossRef
Zurück zum Zitat Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480CrossRef Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480CrossRef
Zurück zum Zitat Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A (2015) Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res 11:184–193CrossRef Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A (2015) Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res 11:184–193CrossRef
Zurück zum Zitat Frumento D, Casazza AA, Al Arni S, Converti A (2013) Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem Eng J 81:120–125CrossRef Frumento D, Casazza AA, Al Arni S, Converti A (2013) Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem Eng J 81:120–125CrossRef
Zurück zum Zitat Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef Gao Y, Yang M, Wang C (2013) Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol 147:484–491CrossRef
Zurück zum Zitat Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507CrossRef Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507CrossRef
Zurück zum Zitat Guldhe A, Singh P, Kumari S, Rawat I, Permaul K, Bux F (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew Energy 85:1002–1010CrossRef Guldhe A, Singh P, Kumari S, Rawat I, Permaul K, Bux F (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew Energy 85:1002–1010CrossRef
Zurück zum Zitat Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G (2013) Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 127:422–428CrossRef Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G (2013) Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 127:422–428CrossRef
Zurück zum Zitat Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264CrossRef Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264CrossRef
Zurück zum Zitat Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309CrossRef Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309CrossRef
Zurück zum Zitat Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14CrossRef Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14CrossRef
Zurück zum Zitat Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef
Zurück zum Zitat Hernandez D, Solana M, Riano B, Garcia-Gonzalez MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378CrossRef Hernandez D, Solana M, Riano B, Garcia-Gonzalez MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378CrossRef
Zurück zum Zitat Hiranoa A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRef Hiranoa A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRef
Zurück zum Zitat Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198CrossRef Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198CrossRef
Zurück zum Zitat Hu Z, Ma X, Li L, Wu J (2014) The catalytic pyrolysis of microalgae to produce syngas. Energy Convers Manag 85:545–550CrossRef Hu Z, Ma X, Li L, Wu J (2014) The catalytic pyrolysis of microalgae to produce syngas. Energy Convers Manag 85:545–550CrossRef
Zurück zum Zitat Johnson MB, Wen Z (2009) Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass. Energy Fuel 23(10):5179–5183CrossRef Johnson MB, Wen Z (2009) Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass. Energy Fuel 23(10):5179–5183CrossRef
Zurück zum Zitat Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354-355:50–55CrossRef Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354-355:50–55CrossRef
Zurück zum Zitat Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012CrossRef Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012CrossRef
Zurück zum Zitat Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690CrossRef Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690CrossRef
Zurück zum Zitat Lee OK, Oh YK, Lee EY (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour Technol 196:22–27CrossRef Lee OK, Oh YK, Lee EY (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour Technol 196:22–27CrossRef
Zurück zum Zitat Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:141207 Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:141207
Zurück zum Zitat Liu C-H, Chang C-Y, Liao Q, Zhu X, Liao C-F, Chang J-S (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrog Energy 38(35):15807–15814CrossRef Liu C-H, Chang C-Y, Liao Q, Zhu X, Liao C-F, Chang J-S (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrog Energy 38(35):15807–15814CrossRef
Zurück zum Zitat Lv X, Zou L, Sun B, Wang J, Sun M-Y (2010) Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. J Exp Mar Biol Ecol 391(1-2):73–83CrossRef Lv X, Zou L, Sun B, Wang J, Sun M-Y (2010) Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. J Exp Mar Biol Ecol 391(1-2):73–83CrossRef
Zurück zum Zitat Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197CrossRef Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197CrossRef
Zurück zum Zitat Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645CrossRef Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645CrossRef
Zurück zum Zitat Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRef Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRef
Zurück zum Zitat Misra R, Guldhe A, Singh P, Rawat I, Bux F (2014) Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production. Chem Eng J 255:327–333CrossRef Misra R, Guldhe A, Singh P, Rawat I, Bux F (2014) Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production. Chem Eng J 255:327–333CrossRef
Zurück zum Zitat Raheem A, Sivasangar S, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R (2015) Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Res 12:52–59CrossRef Raheem A, Sivasangar S, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R (2015) Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Res 12:52–59CrossRef
Zurück zum Zitat Rashid N, Ur Rehman MS, Sadiq M, Mahmood T, Han J-I (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energ Rev 40:760–778CrossRef Rashid N, Ur Rehman MS, Sadiq M, Mahmood T, Han J-I (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energ Rev 40:760–778CrossRef
Zurück zum Zitat Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467CrossRef Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467CrossRef
Zurück zum Zitat Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424CrossRef Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424CrossRef
Zurück zum Zitat Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779CrossRef Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779CrossRef
Zurück zum Zitat Romero Garcia JM, Acien Fernandez FG, Fernandez Sevilla JM (2012) Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170CrossRef Romero Garcia JM, Acien Fernandez FG, Fernandez Sevilla JM (2012) Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170CrossRef
Zurück zum Zitat Sekar S, Chandramohan M (2007) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136CrossRef Sekar S, Chandramohan M (2007) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136CrossRef
Zurück zum Zitat Shie JL, Tsou FJ, Lin KL, Chang CY (2010) Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresour Technol 101(2):761–768CrossRef Shie JL, Tsou FJ, Lin KL, Chang CY (2010) Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresour Technol 101(2):761–768CrossRef
Zurück zum Zitat Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66CrossRef Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66CrossRef
Zurück zum Zitat Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29CrossRef Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29CrossRef
Zurück zum Zitat Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–16CrossRef Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–16CrossRef
Zurück zum Zitat Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRef Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRef
Zurück zum Zitat Srirangan K, Akawi L, Moo-Young M, Chou CP (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl Energy 100:172–186CrossRef Srirangan K, Akawi L, Moo-Young M, Chou CP (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl Energy 100:172–186CrossRef
Zurück zum Zitat Tongprawhan W, Srinuanpan S, Cheirsilp B (2014) Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Bioresour Technol 170:90–99CrossRef Tongprawhan W, Srinuanpan S, Cheirsilp B (2014) Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Bioresour Technol 170:90–99CrossRef
Zurück zum Zitat Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221CrossRef Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221CrossRef
Zurück zum Zitat Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028CrossRef Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028CrossRef
Zurück zum Zitat Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5(3):331–349CrossRef Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5(3):331–349CrossRef
Zurück zum Zitat Wang Y, Guo W, Cheng CL, Ho SH, Chang JS, Ren N (2016) Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol 200:557–564CrossRef Wang Y, Guo W, Cheng CL, Ho SH, Chang JS, Ren N (2016) Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol 200:557–564CrossRef
Zurück zum Zitat Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRef Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRef
Zurück zum Zitat Ward A, Lewis D (2015) Pre-treatment options for halophytic microalgae and associated methane production. Bioresour Technol 177:410–413CrossRef Ward A, Lewis D (2015) Pre-treatment options for halophytic microalgae and associated methane production. Bioresour Technol 177:410–413CrossRef
Zurück zum Zitat Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92(5):909–919CrossRef Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92(5):909–919CrossRef
Zurück zum Zitat Yang Z, Guo R, Xu X, Fan X, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrog Energy 35(18):9618–9623CrossRef Yang Z, Guo R, Xu X, Fan X, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrog Energy 35(18):9618–9623CrossRef
Zurück zum Zitat Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl Energy 88(10):3468–3472CrossRef Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl Energy 88(10):3468–3472CrossRef
Zurück zum Zitat Yun Y-M, Cho S-K, Jung K-W, Kim M-S, Shin H-S, Kim D-H (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae. Int J Hydrog Energy 39(33):19256–19261CrossRef Yun Y-M, Cho S-K, Jung K-W, Kim M-S, Shin H-S, Kim D-H (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae. Int J Hydrog Energy 39(33):19256–19261CrossRef
Zurück zum Zitat Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430CrossRef Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430CrossRef
Metadaten
Titel
Microalgae for Biofuels: Applications, Process Constraints and Future Needs
verfasst von
Faiz Ahmad Ansari
Ajam Yakub Shekh
Sanjay Kumar Gupta
Faizal Bux
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51010-1_3