Skip to main content

2015 | OriginalPaper | Buchkapitel

18. Microbial Fuel Cells for Wastewater Treatment

verfasst von : Cuijie Feng, Subed Chandra Dev Sharma, Chang-Ping Yu

Erschienen in: Biotechnologies and Biomimetics for Civil Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbial fuel cells (MFCs), which are the bioelectrochemical systems, have been developed rapidly over the past few decades and are considered as a promising technique to obtain renewable resources from wastewater. MFCs can be used to harness electricity from microorganisms during wastewater treatment. This chapter reviews recent literature on MFCs for wastewater treatment. We first introduce the concept of MFCs and summarize the materials and design of MFCs afterward. It shows that through innovative materials and design, the current density of MFCs has been greatly improved during the last decade. Microorganisms play a major role in the electricity production of MFCs and therefore, an in-depth discussion of the microbiology of MFCs was also included in this chapter. Extensive studies on exoelectrogenic bacteria and consortia are beginning to expose the mechanistic and ecological complexities of MFC biofilm communities. Yet, our understanding of electrochemically active microbes is still in its infancy, as the diverse communities have a multitude of undiscovered populations in different MFC applications. Further study is warranted to optimize design, materials, and microbiology to improve electricity recovery from MFCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394 Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394
Zurück zum Zitat Allen RM, Bennetto HP (1993) Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39(1):27–40 Allen RM, Bennetto HP (1993) Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39(1):27–40
Zurück zum Zitat Aller RC (1994) The sedimentary Mn cycle in long island sound: its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. J Mar Res 52(2):259–295 Aller RC (1994) The sedimentary Mn cycle in long island sound: its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. J Mar Res 52(2):259–295
Zurück zum Zitat Bennetto H, Delaney G, Mason J, Roller S, Stirling J, Thurston C (1985) The sucrose fuel cell: efficient biomass conversion using a microbial catalyst. Biotechnol Lett 7(10):699–704 Bennetto H, Delaney G, Mason J, Roller S, Stirling J, Thurston C (1985) The sucrose fuel cell: efficient biomass conversion using a microbial catalyst. Biotechnol Lett 7(10):699–704
Zurück zum Zitat Biffinger J, Ribbens M, Ringeisen B, Pietron J, Finkel S, Nealson K (2009) Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol Bioeng 102(2):436–444 Biffinger J, Ribbens M, Ringeisen B, Pietron J, Finkel S, Nealson K (2009) Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol Bioeng 102(2):436–444
Zurück zum Zitat Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485 Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485
Zurück zum Zitat Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555 Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555
Zurück zum Zitat Catal T, Fan Y, Li K, Bermek H, Liu H (2008) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sources 180(1):162–166 Catal T, Fan Y, Li K, Bermek H, Liu H (2008) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sources 180(1):162–166
Zurück zum Zitat Cha J, Choi S, Yu H, Kim H, Kim C (2010) Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78(1):72–79 Cha J, Choi S, Yu H, Kim H, Kim C (2010) Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78(1):72–79
Zurück zum Zitat Chae KJ, Choi MJ, Lee J, Ajayi F, Kim IS (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrogen Energy 33(19):5184–5192 Chae KJ, Choi MJ, Lee J, Ajayi F, Kim IS (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrogen Energy 33(19):5184–5192
Zurück zum Zitat Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525 Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525
Zurück zum Zitat Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607–613 Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607–613
Zurück zum Zitat Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232 Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232
Zurück zum Zitat Cheng S, Kiely P, Logan BE (2011) Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresour Technol 102(1):367–371 Cheng S, Kiely P, Logan BE (2011) Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresour Technol 102(1):367–371
Zurück zum Zitat Clauwaert P, Aelterman P, de Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913 Clauwaert P, Aelterman P, de Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913
Zurück zum Zitat Clauwaert P, Rabaey K, Aelterman P, de Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360 Clauwaert P, Rabaey K, Aelterman P, de Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360
Zurück zum Zitat Curtis TP (2010) Low-energy wastewater treatment: strategies and technologies. In: Mitchell R, Gu J-D (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, New Jersey Curtis TP (2010) Low-energy wastewater treatment: strategies and technologies. In: Mitchell R, Gu J-D (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, New Jersey
Zurück zum Zitat Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy 35(17):8855–8861 Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy 35(17):8855–8861
Zurück zum Zitat Debabov V (2008) Electricity from microorganisms. Microbiology 77(2):123–131 Debabov V (2008) Electricity from microorganisms. Microbiology 77(2):123–131
Zurück zum Zitat Deng L, Li F, Zhou S, Huang D, Ni J (2010) A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull 55(1):99–104 Deng L, Li F, Zhou S, Huang D, Ni J (2010) A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull 55(1):99–104
Zurück zum Zitat Dewan A, Ay SU, Karim MN, Beyenal H (2014) Alternative power sources for remote sensors: a review. J Power Sources 245:129–143 Dewan A, Ay SU, Karim MN, Beyenal H (2014) Alternative power sources for remote sensors: a review. J Power Sources 245:129–143
Zurück zum Zitat Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596 Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596
Zurück zum Zitat Donovan C, Dewan A, Heo D, Lewandowski Z, Beyenal H (2013) Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sources 233:79–85 Donovan C, Dewan A, Heo D, Lewandowski Z, Beyenal H (2013) Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sources 233:79–85
Zurück zum Zitat Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177 Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177
Zurück zum Zitat Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482 Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482
Zurück zum Zitat EPA Office of Water (2006) Wastewater management fact sheet, energy conservation, EPA 832-F-06-024, Washington DC EPA Office of Water (2006) Wastewater management fact sheet, energy conservation, EPA 832-F-06-024, Washington DC
Zurück zum Zitat Feng C, Hou CH, Chen S, Yu CP (2013a) A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91(5):623–628 Feng C, Hou CH, Chen S, Yu CP (2013a) A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91(5):623–628
Zurück zum Zitat Feng C, Hu A, Chen S, Yu CP (2013b) A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Bioresour Technol 143:76–82 Feng C, Hu A, Chen S, Yu CP (2013b) A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Bioresour Technol 143:76–82
Zurück zum Zitat Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880 Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880
Zurück zum Zitat Fernández JL, Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J Am Chem Soc 127(38):13100–13101 Fernández JL, Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J Am Chem Soc 127(38):13100–13101
Zurück zum Zitat Forrestal C, Xu P, Ren Z (2012) Sustainable desalination using a microbial capacitive desalination cell. Energy Environ Sci 5:7161–7167 Forrestal C, Xu P, Ren Z (2012) Sustainable desalination using a microbial capacitive desalination cell. Energy Environ Sci 5:7161–7167
Zurück zum Zitat Freguia S, Masuda M, Tsujimura S, Kano K (2009) Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76(1):14–18 Freguia S, Masuda M, Tsujimura S, Kano K (2009) Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76(1):14–18
Zurück zum Zitat Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101(4):1233–1238 Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101(4):1233–1238
Zurück zum Zitat Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334 Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334
Zurück zum Zitat Ha PT, Tae B, Chang IS (2007) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22(1):164–168 Ha PT, Tae B, Chang IS (2007) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22(1):164–168
Zurück zum Zitat Habermann W, Pommer E (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35(1):128–133 Habermann W, Pommer E (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35(1):128–133
Zurück zum Zitat Hasvold Ø, Henriksen H, Citi G, Johansen BØ, Kjønigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65(1):253–261 Hasvold Ø, Henriksen H, Citi G, Johansen BØ, Kjønigsen T, Galetti R (1997) Sea-water battery for subsea control systems. J Power Sources 65(1):253–261
Zurück zum Zitat He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267 He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267
Zurück zum Zitat He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217 He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217
Zurück zum Zitat Holmes D, Bond D, O’neil R, Reimers C, Tender L, Lovley D (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48(2):178–190 Holmes D, Bond D, O’neil R, Reimers C, Tender L, Lovley D (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48(2):178–190
Zurück zum Zitat Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80(2):349–355 Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80(2):349–355
Zurück zum Zitat Ieropoulos IA, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J (2013) Waste to real energy: the first MFC powered mobile phone. Phys Chem Chem Phys 15(37):15312–15316 Ieropoulos IA, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J (2013) Waste to real energy: the first MFC powered mobile phone. Phys Chem Chem Phys 15(37):15312–15316
Zurück zum Zitat Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Hu B, Suib S, Raymond D, Li B (2011) A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy 36(1):876–884 Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Hu B, Suib S, Raymond D, Li B (2011) A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy 36(1):876–884
Zurück zum Zitat Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77(2):393–402 Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77(2):393–402
Zurück zum Zitat Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88(1):371–380 Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88(1):371–380
Zurück zum Zitat Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011a) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102(1):388–394 Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011a) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102(1):388–394
Zurück zum Zitat Kiely PD, Rader G, Regan JM, Logan BE (2011b) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol 102(1):361–366 Kiely PD, Rader G, Regan JM, Logan BE (2011b) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol 102(1):361–366
Zurück zum Zitat Kim B, Park H, Kim H, Kim G, Chang I, Lee J, Phung N (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681 Kim B, Park H, Kim H, Kim G, Chang I, Lee J, Phung N (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681
Zurück zum Zitat Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25(7):541–545 Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25(7):541–545
Zurück zum Zitat Kim H, Hyun M, Chang I, Kim BH (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9(3):365–367 Kim H, Hyun M, Chang I, Kim BH (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9(3):365–367
Zurück zum Zitat Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152 Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152
Zurück zum Zitat Kim JR, Jung SH, Regan JM, Logan BE (2007a) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98(13):2568–2577 Kim JR, Jung SH, Regan JM, Logan BE (2007a) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98(13):2568–2577
Zurück zum Zitat Kim M, Hyun MS, Gadd GM, Kim HJ (2007b) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9(12):1323–1328 Kim M, Hyun MS, Gadd GM, Kim HJ (2007b) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9(12):1323–1328
Zurück zum Zitat Lee S, Choi Y, Jung S, Kim S (2002) Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry 57(2):173–178 Lee S, Choi Y, Jung S, Kim S (2002) Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry 57(2):173–178
Zurück zum Zitat Lewis K (1966) Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells. Bacteriol Rev 30(1):101–113 Lewis K (1966) Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells. Bacteriol Rev 30(1):101–113
Zurück zum Zitat Liu H, Cheng S, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39(14):5488–5493 Liu H, Cheng S, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39(14):5488–5493
Zurück zum Zitat Liu H, Cheng S, Logan BE (2005b) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662 Liu H, Cheng S, Logan BE (2005b) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662
Zurück zum Zitat Liu H, Grot S, Logan BE (2005c) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320 Liu H, Grot S, Logan BE (2005c) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320
Zurück zum Zitat Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046 Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046
Zurück zum Zitat Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285 Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285
Zurück zum Zitat Logan BE (2004) Feature article: biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160A–167A Logan BE (2004) Feature article: biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160A–167A
Zurück zum Zitat Logan BE (2008) Microbial fuel cells. Wiley, Hoboken, New Jersey Logan BE (2008) Microbial fuel cells. Wiley, Hoboken, New Jersey
Zurück zum Zitat Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192 Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192
Zurück zum Zitat Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39(5):942–952 Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39(5):942–952
Zurück zum Zitat Logan BE, Regan JM (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518 Logan BE, Regan JM (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518
Zurück zum Zitat Logan BE, Regan JM (2006b) Microbial challenges and applications. Environ Sci Technol 40(17):5172–5180 Logan BE, Regan JM (2006b) Microbial challenges and applications. Environ Sci Technol 40(17):5172–5180
Zurück zum Zitat Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332 Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332
Zurück zum Zitat Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063 Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063
Zurück zum Zitat Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586 Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586
Zurück zum Zitat McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 45(17):7100–7106 McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 45(17):7100–7106
Zurück zum Zitat Mecheri B, D’Epifanio A, di Vona ML, Traversa E, Licoccia S, Miyayama M (2006) Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications. J Electrochem Soc 153(3):A463–A467 Mecheri B, D’Epifanio A, di Vona ML, Traversa E, Licoccia S, Miyayama M (2006) Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications. J Electrochem Soc 153(3):A463–A467
Zurück zum Zitat Milliken C, May H (2007) Sustained generation of electricity by the spore-forming, gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73(5):1180–1189 Milliken C, May H (2007) Sustained generation of electricity by the spore-forming, gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73(5):1180–1189
Zurück zum Zitat Min B, Angelidaki I (2008) Innovative microbial fuel cell for electricity production from anaerobic reactors. J Power Sources 180(1):641–647 Min B, Angelidaki I (2008) Innovative microbial fuel cell for electricity production from anaerobic reactors. J Power Sources 180(1):641–647
Zurück zum Zitat Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686 Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686
Zurück zum Zitat Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814 Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814
Zurück zum Zitat Morris JM, Jin S (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 43(1):18–23 Morris JM, Jin S (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 43(1):18–23
Zurück zum Zitat Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41(22):7895–7900 Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41(22):7895–7900
Zurück zum Zitat Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873 Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873
Zurück zum Zitat Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169 Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169
Zurück zum Zitat Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900–4904 Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900–4904
Zurück zum Zitat Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28(6):871–881 Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28(6):871–881
Zurück zum Zitat Pant D, van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543 Pant D, van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543
Zurück zum Zitat Park D, Zeikus J (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59(1):58–61 Park D, Zeikus J (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59(1):58–61
Zurück zum Zitat Park D, Zeikus J (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181(8):2403–2410 Park D, Zeikus J (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181(8):2403–2410
Zurück zum Zitat Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297 Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297
Zurück zum Zitat Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355 Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355
Zurück zum Zitat Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306 Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306
Zurück zum Zitat Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche Y, Kapadnis B (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100(21):5132–5139 Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche Y, Kapadnis B (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100(21):5132–5139
Zurück zum Zitat Peng L, You S-J, Wang J-Y (2010) Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25(5):1248–1251 Peng L, You S-J, Wang J-Y (2010) Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25(5):1248–1251
Zurück zum Zitat Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134 Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134
Zurück zum Zitat Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233(1):77–82 Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233(1):77–82
Zurück zum Zitat Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B Biol Sci 84(571):260–276 Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B Biol Sci 84(571):260–276
Zurück zum Zitat Qiao Y, Li CM, Bao S-J, Bao Q-L (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170(1):79–84 Qiao Y, Li CM, Bao S-J, Bao Q-L (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170(1):79–84
Zurück zum Zitat Rabaey K, Boon N, Höfte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408 Rabaey K, Boon N, Höfte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408
Zurück zum Zitat Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382 Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382
Zurück zum Zitat Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082 Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082
Zurück zum Zitat Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1(1):9–18 Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1(1):9–18
Zurück zum Zitat Rabaey K, van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, de Schamphelaire L, Pham HT, Vermeulen J, Verhaege M (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224 Rabaey K, van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, de Schamphelaire L, Pham HT, Vermeulen J, Verhaege M (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224
Zurück zum Zitat Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298 Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298
Zurück zum Zitat Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem B 109(48):22909–22912 Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem B 109(48):22909–22912
Zurück zum Zitat Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41(11):4053–4058 Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41(11):4053–4058
Zurück zum Zitat Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671 Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671
Zurück zum Zitat Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1(4):417–429 Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1(4):417–429
Zurück zum Zitat Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634 Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634
Zurück zum Zitat Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31(12):1632–1640 Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31(12):1632–1640
Zurück zum Zitat Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459 Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459
Zurück zum Zitat Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755 Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755
Zurück zum Zitat Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Ann Rev Mater Res 33(1):503–555 Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Ann Rev Mater Res 33(1):503–555
Zurück zum Zitat Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629 Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629
Zurück zum Zitat Scott K, Rimbu G, Katuri K, Prasad K, Head I (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ Prot 85(5):481–488 Scott K, Rimbu G, Katuri K, Prasad K, Head I (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ Prot 85(5):481–488
Zurück zum Zitat Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179(2):571–575 Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179(2):571–575
Zurück zum Zitat Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20(8):821–825 Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20(8):821–825
Zurück zum Zitat Thurston C, Bennetto H, Delaney G, Mason J, Roller S, Stirling J (1985) Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 131(6):1393–1401 Thurston C, Bennetto H, Delaney G, Mason J, Roller S, Stirling J (1985) Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 131(6):1393–1401
Zurück zum Zitat Vante NA, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432 Vante NA, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432
Zurück zum Zitat Venkata Mohan S, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma P (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99(3):596–603 Venkata Mohan S, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma P (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99(3):596–603
Zurück zum Zitat Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093 Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093
Zurück zum Zitat Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46(20):11459–11466 Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46(20):11459–11466
Zurück zum Zitat Xing D, Cheng S, Logan BE, Regan JM (2010) Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl Microbiol Biotechnol 85(5):1575–1587 Xing D, Cheng S, Logan BE, Regan JM (2010) Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl Microbiol Biotechnol 85(5):1575–1587
Zurück zum Zitat Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25(1):105–111 Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25(1):105–111
Zurück zum Zitat Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151 Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151
Zurück zum Zitat Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111(5):1108–1115 Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111(5):1108–1115
Zurück zum Zitat You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162(2):1409–1415 You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162(2):1409–1415
Zurück zum Zitat Yu CP, Liang ZH, Das A, Hu ZQ (2011) Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45(3):1157–1164 Yu CP, Liang ZH, Das A, Hu ZQ (2011) Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45(3):1157–1164
Zurück zum Zitat Yuan L, Yang X, Liang P, Wang L, Huang ZH, Wei J, Huang X (2012) Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour Technol 110:735–738 Yuan L, Yang X, Liang P, Wang L, Huang ZH, Wei J, Huang X (2012) Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour Technol 110:735–738
Zurück zum Zitat Zhang E, Xu W, Diao G, Shuang C (2006) Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 161(2):820–825 Zhang E, Xu W, Diao G, Shuang C (2006) Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 161(2):820–825
Zurück zum Zitat Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7(12):1405–1410 Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7(12):1405–1410
Zurück zum Zitat Zhao H, Bian P, Ju D (2009) Electrochemical performance of magnesium alloy and its application on the sea water battery. J Environ Sci 21:S88–S91 Zhao H, Bian P, Ju D (2009) Electrochemical performance of magnesium alloy and its application on the sea water battery. J Environ Sci 21:S88–S91
Zurück zum Zitat Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435 Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435
Metadaten
Titel
Microbial Fuel Cells for Wastewater Treatment
verfasst von
Cuijie Feng
Subed Chandra Dev Sharma
Chang-Ping Yu
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09287-4_18