Skip to main content

2018 | OriginalPaper | Buchkapitel

Microcalorometers for Detection of Trace Energetic Chemicals

verfasst von : Zheyao Wang, Wenzhou Ruan

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Detection of trace energetic chemical (TEC) vapors is a challenging task because of the extremely low vapor concentrations of most TECs. Microcalorimeters, which consist of a suspended microbridge with integrated heaters and thermistors, are emerging as a powerful tool for fast detection of TECs. By heating the TEC molecules adsorbed onto the microcalorimeters to deflagration using the heaters and measuring the induced thermal responses and the total heat using the thermistors, microcalorimeters can detect TEC vapors through differential scanning calorimetry mode or differential thermal analysis mode. Due to the large surface areas, the small heat mass, and the rapid heating rates, the microcalorimeters are able to detect TEC vapors with low detection limits and fast detection rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agah M, Potkay JA, Lambertus G et al (2005) High-performance temperature-programmed microfabricated gas chromatography columns. IEEE J Microelectromech Syst 14:1039–1050CrossRef Agah M, Potkay JA, Lambertus G et al (2005) High-performance temperature-programmed microfabricated gas chromatography columns. IEEE J Microelectromech Syst 14:1039–1050CrossRef
Zurück zum Zitat Aguilar AD, Forzani ES, Leright M et al (2010) A hybrid nanosensor for TNT vapor detection. Nano Lett 10:380–384CrossRef Aguilar AD, Forzani ES, Leright M et al (2010) A hybrid nanosensor for TNT vapor detection. Nano Lett 10:380–384CrossRef
Zurück zum Zitat Berger S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef Berger S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef
Zurück zum Zitat Bogue R (2011) Terrorism and military actions pose the ultimate challenge to gas sensing. Sensors Rev 31:6–12CrossRef Bogue R (2011) Terrorism and military actions pose the ultimate challenge to gas sensing. Sensors Rev 31:6–12CrossRef
Zurück zum Zitat Boukabache A, Pons R (2002) Doping effects on thermal behavior of silicon resistor. Electron Lett 38:342–343CrossRef Boukabache A, Pons R (2002) Doping effects on thermal behavior of silicon resistor. Electron Lett 38:342–343CrossRef
Zurück zum Zitat Bruzo MG, Komarov PL, Raad PE (2003) Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans Compon Packag Technol 26:80–88CrossRef Bruzo MG, Komarov PL, Raad PE (2003) Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans Compon Packag Technol 26:80–88CrossRef
Zurück zum Zitat Camara EHM, Breuil P, Briand D et al (2011) A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection. Anal Chim Acta 688:175–182CrossRef Camara EHM, Breuil P, Briand D et al (2011) A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection. Anal Chim Acta 688:175–182CrossRef
Zurück zum Zitat Carreto-Vazquez VH, Wojcik AK, Liu Y-S et al (2010) Miniaturized calorimeter for thermal screening of energetic materials. Microelectron J 41:874–881CrossRef Carreto-Vazquez VH, Wojcik AK, Liu Y-S et al (2010) Miniaturized calorimeter for thermal screening of energetic materials. Microelectron J 41:874–881CrossRef
Zurück zum Zitat Cavicchi RE, Poirier GE, Tea NH et al (2004) Micro-differential scanning calorimeter for combustible gas sensing. Sensors Actuators B Chem 97:22–30CrossRef Cavicchi RE, Poirier GE, Tea NH et al (2004) Micro-differential scanning calorimeter for combustible gas sensing. Sensors Actuators B Chem 97:22–30CrossRef
Zurück zum Zitat Chen C-C, Bannister WW, Viswanathan A (1999) Micro-thermal analysis for airport detection of energetic materials. In: Proceedings the 27th annual conference on North American thermal analysis society, pp 67–72 Chen C-C, Bannister WW, Viswanathan A (1999) Micro-thermal analysis for airport detection of energetic materials. In: Proceedings the 27th annual conference on North American thermal analysis society, pp 67–72
Zurück zum Zitat Chen PC, Sukcharoenchoke S, Ryu K et al (2010) 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904CrossRef Chen PC, Sukcharoenchoke S, Ryu K et al (2010) 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904CrossRef
Zurück zum Zitat Ewing RG, Atkinson DA, Eiceman GA et al (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529CrossRef Ewing RG, Atkinson DA, Eiceman GA et al (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529CrossRef
Zurück zum Zitat Fainberg A (1992) Explosives detection for aviation security. Science 255:1531–1537CrossRef Fainberg A (1992) Explosives detection for aviation security. Science 255:1531–1537CrossRef
Zurück zum Zitat Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500CrossRef Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500CrossRef
Zurück zum Zitat Gershanik AP, Zeiri Y (2010) Sublimation rate of TNT microcrystals in air. J Phys Chem A 114:12403–12410CrossRef Gershanik AP, Zeiri Y (2010) Sublimation rate of TNT microcrystals in air. J Phys Chem A 114:12403–12410CrossRef
Zurück zum Zitat Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542CrossRef Goeders KM, Colton JS, Bottomley LA (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108:522–542CrossRef
Zurück zum Zitat Greve A, Olsen JK, Boisen A et al (2009) Micro-calorimetric sensor for vapour phase explosive detection with optimized heat profile. In: Proceedings IEEE sensors conference on Hawaii, pp 723–726 Greve A, Olsen JK, Boisen A et al (2009) Micro-calorimetric sensor for vapour phase explosive detection with optimized heat profile. In: Proceedings IEEE sensors conference on Hawaii, pp 723–726
Zurück zum Zitat Hess CK, Miaoulis IN (1995) Implicit modified enthalpy method with application to thin film melting. Int J Numer Methods Heat Fluid Flow 5:385–398CrossRef Hess CK, Miaoulis IN (1995) Implicit modified enthalpy method with application to thin film melting. Int J Numer Methods Heat Fluid Flow 5:385–398CrossRef
Zurück zum Zitat Hiraoka T, Izadi-Najafabadi A, Yamada T et al (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2/g surface area. Adv Funct Mater 20:422–428CrossRef Hiraoka T, Izadi-Najafabadi A, Yamada T et al (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2/g surface area. Adv Funct Mater 20:422–428CrossRef
Zurück zum Zitat Hobbs ML, Kaneshige MJ, Gilbert DW et al (2009) Modeling TNT ignition. J Phys Chem A 113:10474–10487CrossRef Hobbs ML, Kaneshige MJ, Gilbert DW et al (2009) Modeling TNT ignition. J Phys Chem A 113:10474–10487CrossRef
Zurück zum Zitat Hrapovic S, Majid E, Liu Y et al (2006) Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512CrossRef Hrapovic S, Majid E, Liu Y et al (2006) Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512CrossRef
Zurück zum Zitat Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74:3005–3007CrossRef Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74:3005–3007CrossRef
Zurück zum Zitat Kleiner MB, Kuhn SA, Weber W (1996) Thermal conductivity measurements of thin silicon dioxide films in integrated circuits. IEEE Trans Electron Devices 43:1602–1609CrossRef Kleiner MB, Kuhn SA, Weber W (1996) Thermal conductivity measurements of thin silicon dioxide films in integrated circuits. IEEE Trans Electron Devices 43:1602–1609CrossRef
Zurück zum Zitat Lamberg P, Lehtiniemi R, Henell A-M (2004) Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Thermal Sci 43:277–287CrossRef Lamberg P, Lehtiniemi R, Henell A-M (2004) Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Thermal Sci 43:277–287CrossRef
Zurück zum Zitat Lee DS, Shim CH, Lim JW et al (2002) A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air. Sensors Actuators B Chem 83:250–255CrossRef Lee DS, Shim CH, Lim JW et al (2002) A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air. Sensors Actuators B Chem 83:250–255CrossRef
Zurück zum Zitat Lienhard JH IV, Lienhard JHV (2005) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge, pp 19–26MATH Lienhard JH IV, Lienhard JHV (2005) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge, pp 19–26MATH
Zurück zum Zitat Liu YS, Ugaza VM, North SW et al (2007) Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds. J Hazardous Mat 142:662–668CrossRef Liu YS, Ugaza VM, North SW et al (2007) Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds. J Hazardous Mat 142:662–668CrossRef
Zurück zum Zitat Lu C-J, Whiting J, Sacks RD, Zellers ET (2003) Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Anal Chem 75:1400–1409CrossRef Lu C-J, Whiting J, Sacks RD, Zellers ET (2003) Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Anal Chem 75:1400–1409CrossRef
Zurück zum Zitat Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499–2512CrossRef Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499–2512CrossRef
Zurück zum Zitat Mullen C, Irwin A, Pond BV et al (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem 78:3807–3814CrossRef Mullen C, Irwin A, Pond BV et al (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem 78:3807–3814CrossRef
Zurück zum Zitat Naddo T, Yang XM, Moore JS et al (2008) Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sensors Actuators B Chem 134:287–291CrossRef Naddo T, Yang XM, Moore JS et al (2008) Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sensors Actuators B Chem 134:287–291CrossRef
Zurück zum Zitat Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63:461–467CrossRef Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63:461–467CrossRef
Zurück zum Zitat Panzer MA, Zhang G, Mann D et al (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. ASME J Heat Transfer 130:052401CrossRef Panzer MA, Zhang G, Mann D et al (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. ASME J Heat Transfer 130:052401CrossRef
Zurück zum Zitat Patel SV, Mlsna TE, Fruhberger B et al (2003) Chemicapacitive microsensors for volatile organic compound detection. Sensors Actuators B Chem 96:541–553CrossRef Patel SV, Mlsna TE, Fruhberger B et al (2003) Chemicapacitive microsensors for volatile organic compound detection. Sensors Actuators B Chem 96:541–553CrossRef
Zurück zum Zitat Patil N, Lin A, Myers ER et al (2009) Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotech 8:498–504CrossRef Patil N, Lin A, Myers ER et al (2009) Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotech 8:498–504CrossRef
Zurück zum Zitat Piazzon N, Rosenthal M, Bondar A et al (2010) Characterization of explosives traces by the nanocalorimetry. J Phys Chem Solids 71:114–118CrossRef Piazzon N, Rosenthal M, Bondar A et al (2010) Characterization of explosives traces by the nanocalorimetry. J Phys Chem Solids 71:114–118CrossRef
Zurück zum Zitat Piekiel NW, Cavicchib RE, Zachariaha MR (2011) Rapid-heating of energetic materials using a micro-differential, scanning calorimeter. Thermochim Acta 521:125–129CrossRef Piekiel NW, Cavicchib RE, Zachariaha MR (2011) Rapid-heating of energetic materials using a micro-differential, scanning calorimeter. Thermochim Acta 521:125–129CrossRef
Zurück zum Zitat Pinnaduwage LA, Gehl A, Hedden DL et al (2003) A microsensor for trinitrotoluene vapour. Nature 425:474CrossRef Pinnaduwage LA, Gehl A, Hedden DL et al (2003) A microsensor for trinitrotoluene vapour. Nature 425:474CrossRef
Zurück zum Zitat Pinnaduwage LA, Wig A, Hedden DL et al (2004a) Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys 95:5871–5875CrossRef Pinnaduwage LA, Wig A, Hedden DL et al (2004a) Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys 95:5871–5875CrossRef
Zurück zum Zitat Pinnaduwage LA, Yi D, Tian F et al (2004b) Adsorption of trinitroluene on uncoated silicon microcantilever surfaces. Langmuir 20:2690–2694CrossRef Pinnaduwage LA, Yi D, Tian F et al (2004b) Adsorption of trinitroluene on uncoated silicon microcantilever surfaces. Langmuir 20:2690–2694CrossRef
Zurück zum Zitat Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sensors J 5:775–785CrossRef Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sensors J 5:775–785CrossRef
Zurück zum Zitat Pinnaduwage LA, Gehl AC, Allman SL et al (2007) Miniature sensor suitable for electronic nose applications. Rev Sci Instrum 78:055101CrossRef Pinnaduwage LA, Gehl AC, Allman SL et al (2007) Miniature sensor suitable for electronic nose applications. Rev Sci Instrum 78:055101CrossRef
Zurück zum Zitat Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3:3287–3293CrossRef Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3:3287–3293CrossRef
Zurück zum Zitat Ruan W, Wang Z, Liu L et al (2011) Synthesis of carbon nanotubes on suspending microstructures by rapid local laser heating. IEEE Sensors J 11:3424–3425CrossRef Ruan W, Wang Z, Liu L et al (2011) Synthesis of carbon nanotubes on suspending microstructures by rapid local laser heating. IEEE Sensors J 11:3424–3425CrossRef
Zurück zum Zitat Ruan W, Wang Z, Li Y, Liu L (2012) In-situ heat capacity measurement of carbon nanotubes using suspending microstructure based micro-calorimetry. IEEE Trans Nanotech 11:367–373CrossRef Ruan W, Wang Z, Li Y, Liu L (2012) In-situ heat capacity measurement of carbon nanotubes using suspending microstructure based micro-calorimetry. IEEE Trans Nanotech 11:367–373CrossRef
Zurück zum Zitat Ruan W, Wang Z, Li Y, Liu L (2013) A microcalorimeter integrated with carbon nanotube interface layers for fast detection of trace energetic chemicals. IEEE J Microelectromechanical Syst 22(1):152–162CrossRef Ruan W, Wang Z, Li Y, Liu L (2013) A microcalorimeter integrated with carbon nanotube interface layers for fast detection of trace energetic chemicals. IEEE J Microelectromechanical Syst 22(1):152–162CrossRef
Zurück zum Zitat Senesac LR, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36CrossRef Senesac LR, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36CrossRef
Zurück zum Zitat Senesac LR, Yi D, Greve A et al (2009) Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102CrossRef Senesac LR, Yi D, Greve A et al (2009) Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102CrossRef
Zurück zum Zitat Sergio M, Arben M (2012) Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis 24:459–469CrossRef Sergio M, Arben M (2012) Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis 24:459–469CrossRef
Zurück zum Zitat Shankaran DR, Gobi KV, Sakai T et al (2005) Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens Bioelectron 20:1750–1756CrossRef Shankaran DR, Gobi KV, Sakai T et al (2005) Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens Bioelectron 20:1750–1756CrossRef
Zurück zum Zitat Sheehan PE, Whitman LJ (2005) Detection limits for Nanoscale biosensors. Nano Lett 5(4):803–807CrossRef Sheehan PE, Whitman LJ (2005) Detection limits for Nanoscale biosensors. Nano Lett 5(4):803–807CrossRef
Zurück zum Zitat Singh S (2007) Sensors-an effective approach for the detection of explosives. J Hazardous Mater 144:15–28CrossRef Singh S (2007) Sensors-an effective approach for the detection of explosives. J Hazardous Mater 144:15–28CrossRef
Zurück zum Zitat Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6:573–590CrossRef Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6:573–590CrossRef
Zurück zum Zitat Son Y, Pal SK, Borca-Tasciuc T et al (2008) Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J Appl Phys 103:024911CrossRef Son Y, Pal SK, Borca-Tasciuc T et al (2008) Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J Appl Phys 103:024911CrossRef
Zurück zum Zitat Southworth DR, Bellan LM, Linzon Y et al (2010) Stress-based vapor sensing using resonant microbridges. Appl Phys Lett 96:163503CrossRef Southworth DR, Bellan LM, Linzon Y et al (2010) Stress-based vapor sensing using resonant microbridges. Appl Phys Lett 96:163503CrossRef
Zurück zum Zitat Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232CrossRef Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232CrossRef
Zurück zum Zitat Sun D, Garimella SV (2005) Numerical and experimental investigation of the melt casting of explosives. Propellants Explos Pyrotech 30:369–380CrossRef Sun D, Garimella SV (2005) Numerical and experimental investigation of the melt casting of explosives. Propellants Explos Pyrotech 30:369–380CrossRef
Zurück zum Zitat Sun Y, Liu K, Miao J et al (2010) Highly sensitive surface-enhanced raman scattering substrate made from super-aligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef Sun Y, Liu K, Miao J et al (2010) Highly sensitive surface-enhanced raman scattering substrate made from super-aligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef
Zurück zum Zitat Timmermans YM, Grigoras K, Nasibulin AG et al (2011) Lithography-free fabrication of carbon nanotube network transistors. Nanotechnol 22:065303CrossRef Timmermans YM, Grigoras K, Nasibulin AG et al (2011) Lithography-free fabrication of carbon nanotube network transistors. Nanotechnol 22:065303CrossRef
Zurück zum Zitat Tournus T, Latil S, Heggie MI et al (2005) Pi-stacking interaction between carbon nanotubes and organic molecules. Phy Rev B 72:075431CrossRef Tournus T, Latil S, Heggie MI et al (2005) Pi-stacking interaction between carbon nanotubes and organic molecules. Phy Rev B 72:075431CrossRef
Zurück zum Zitat Wang J (2004) Microchip devices for detecting terrorist weapons. Anal Chim Acta 507:3–10CrossRef Wang J (2004) Microchip devices for detecting terrorist weapons. Anal Chim Acta 507:3–10CrossRef
Zurück zum Zitat Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423CrossRef Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423CrossRef
Zurück zum Zitat Wang J, Thongngamdee S (2003) On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters. Anal Chim Acta 485:139–144CrossRef Wang J, Thongngamdee S (2003) On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters. Anal Chim Acta 485:139–144CrossRef
Zurück zum Zitat Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sensors Actuators A 120(2):325–336CrossRef Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sensors Actuators A 120(2):325–336CrossRef
Zurück zum Zitat Wang L, Wang B, Lin Q (2008) Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sensors Actuators B Chem 134:953–958CrossRef Wang L, Wang B, Lin Q (2008) Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules. Sensors Actuators B Chem 134:953–958CrossRef
Zurück zum Zitat Woods LM, Badescu SC, Reinecke TL (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B 75:155415CrossRef Woods LM, Badescu SC, Reinecke TL (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B 75:155415CrossRef
Zurück zum Zitat Xu P, Li X, Yu H et al (2010) Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J Micromech Microeng 20:115003CrossRef Xu P, Li X, Yu H et al (2010) Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J Micromech Microeng 20:115003CrossRef
Zurück zum Zitat Yamane T, Nagai N, Katayama S, Todoki M (2002) Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. Appl Phys Lett 91:9772–9776 Yamane T, Nagai N, Katayama S, Todoki M (2002) Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. Appl Phys Lett 91:9772–9776
Zurück zum Zitat Yi D, Greve A, Hales JH et al (2008) Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. Appl Phys Lett 93:154102CrossRef Yi D, Greve A, Hales JH et al (2008) Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. Appl Phys Lett 93:154102CrossRef
Zurück zum Zitat Youssef S, Podlecki J, Al Asmar R et al (2009) MEMS scanning calorimeter with serpentine-shaped platinum resistors for characterizations of microsamples. IEEE J Microelectromech Syst 18:414–423CrossRef Youssef S, Podlecki J, Al Asmar R et al (2009) MEMS scanning calorimeter with serpentine-shaped platinum resistors for characterizations of microsamples. IEEE J Microelectromech Syst 18:414–423CrossRef
Zurück zum Zitat Yu X, Tang Q, Zhang H et al (2007) Design of high sensitivity cantilever and its monolithic integration with CMOS circuits. IEEE Sensors J 7:489–495CrossRef Yu X, Tang Q, Zhang H et al (2007) Design of high sensitivity cantilever and its monolithic integration with CMOS circuits. IEEE Sensors J 7:489–495CrossRef
Zurück zum Zitat Zhou Y, Wang Z, Wang C et al (2009) Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J Micromech Microeng 19:065026CrossRef Zhou Y, Wang Z, Wang C et al (2009) Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J Micromech Microeng 19:065026CrossRef
Zurück zum Zitat Zhou Y, Johnson JL, Ural A, Xie H (2012) Localized growth of carbon nanotubes on CMOS substrate at room temperature using maskless post-CMOS processing. IEEE Trans Nanotechnol 11:16–20CrossRef Zhou Y, Johnson JL, Ural A, Xie H (2012) Localized growth of carbon nanotubes on CMOS substrate at room temperature using maskless post-CMOS processing. IEEE Trans Nanotechnol 11:16–20CrossRef
Zurück zum Zitat Zribi A, Knobloch A, Rao A (2005) CO2 detection using carbon nanotube networks and micromachined resonant transducers. Appl Phys Lett 86:203112CrossRef Zribi A, Knobloch A, Rao A (2005) CO2 detection using carbon nanotube networks and micromachined resonant transducers. Appl Phys Lett 86:203112CrossRef
Zurück zum Zitat Zuck A, Greenblatt J, Zifman A et al (2008) Explosive detection by microthermal analysis. J Energetic Mat 26:163–180CrossRef Zuck A, Greenblatt J, Zifman A et al (2008) Explosive detection by microthermal analysis. J Energetic Mat 26:163–180CrossRef
Metadaten
Titel
Microcalorometers for Detection of Trace Energetic Chemicals
verfasst von
Zheyao Wang
Wenzhou Ruan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_22

Neuer Inhalt