Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Microelectronics for Muscle Fatigue Monitoring Through Surface EMG

verfasst von : Pantelis Georgiou, Ermis Koutsos

Erschienen in: CMOS Circuits for Biological Sensing and Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electromyogram (EMG), the recording of the electrical impulses of the muscles, is a rich source of information, which can facilitate such an insight into our muscles and especially their activation and fatigue level. Muscle fatigue has been shown to be one of the most important biofeedback parameters of EMG in rehabilitation, ergonomics and training, by using measured results from the body to change the way we behave, improve our performance and achieve better compliance to rehabilitation. This chapter addresses the challenge of reliably and efficiently estimating a muscle’s fatigue state through monitoring surface EMG signals, with the use of low power integrated circuits. CMOS technology facilitates localised real-time processing to achieve complete miniaturisation, resulting in an information driven system rather than conventionally data driven system. Thus, reducing requirements on data transmission, saving power and increasing the degree of freedom for the user. Several EMG properties progressively change during muscle fatigue and can be quantified in the time and frequency domains using different processing techniques, however this chapter focuses on the measurement of muscle fibre conduction velocity as an indicator of fatigue. A novel bit-stream cross-correlator design that greatly simplifies the sEMG signal without any loss of information is presented for the estimation of the EMG conduction velocity, which is associated with the physiological changes of the muscle during fatigue. The proposed approach is scalable, as several muscle fatigue monitoring SoCs can operate in parallel and periodically relay key information about the muscle, thus reducing data transmission costs and bandwidth requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Reaz, M. Hussain, F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. online 8(1), 11–35 (2006)CrossRef M. Reaz, M. Hussain, F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. online 8(1), 11–35 (2006)CrossRef
2.
Zurück zum Zitat G. Caffier, D. Heinecke, R. Hinterthan, Surface EMG and load level during long-lasting static contractions of low intensity. Int. J. Ind. Ergon. 12(1–2), 77–83 (1993)CrossRef G. Caffier, D. Heinecke, R. Hinterthan, Surface EMG and load level during long-lasting static contractions of low intensity. Int. J. Ind. Ergon. 12(1–2), 77–83 (1993)CrossRef
3.
Zurück zum Zitat S.H. Roy, C.J. De Luca, L. Snyder-Mackler, M.S. Emley, R.L. Crenshaw, J.P. Lyons, Fatigue, recovery, and low back pain in varsity rowers. Med. Sci. Sports Exerc. 22(4), 463–469 (1990)CrossRef S.H. Roy, C.J. De Luca, L. Snyder-Mackler, M.S. Emley, R.L. Crenshaw, J.P. Lyons, Fatigue, recovery, and low back pain in varsity rowers. Med. Sci. Sports Exerc. 22(4), 463–469 (1990)CrossRef
4.
Zurück zum Zitat R. Merletti, P.A. Parker, Electromyography: Physiology, Engineering, and Non-invasive Applications, vol. 11 (Wiley, New York, 2004)CrossRef R. Merletti, P.A. Parker, Electromyography: Physiology, Engineering, and Non-invasive Applications, vol. 11 (Wiley, New York, 2004)CrossRef
5.
Zurück zum Zitat M. Cifrek, S. Tonković, V. Medved, Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions. Measurement 27(2), 85–92 (2000)CrossRef M. Cifrek, S. Tonković, V. Medved, Measurement and analysis of surface myoelectric signals during fatigued cyclic dynamic contractions. Measurement 27(2), 85–92 (2000)CrossRef
6.
Zurück zum Zitat J. Petrofsky, Filter bank analyser for automatic analysis of the EMG. Med. Biol. Eng. Comput. 18(5), 585–590 (1980)CrossRef J. Petrofsky, Filter bank analyser for automatic analysis of the EMG. Med. Biol. Eng. Comput. 18(5), 585–590 (1980)CrossRef
7.
Zurück zum Zitat L.D. Gilmore, C.J. De Luca, Muscle fatigue monitor (MFM): second generation. IEEE Trans. Biomed. Eng. 1, 75–78 (1985)CrossRef L.D. Gilmore, C.J. De Luca, Muscle fatigue monitor (MFM): second generation. IEEE Trans. Biomed. Eng. 1, 75–78 (1985)CrossRef
8.
Zurück zum Zitat F.B. Stulen, C.J. De Luca, Muscle fatigue monitor: a noninvasive device for observing localized muscular fatigue. IEEE Trans. Biomed. Eng. 12, 760–768 (1982)CrossRef F.B. Stulen, C.J. De Luca, Muscle fatigue monitor: a noninvasive device for observing localized muscular fatigue. IEEE Trans. Biomed. Eng. 12, 760–768 (1982)CrossRef
9.
Zurück zum Zitat R. Merletti, D. Biey, M. Biey, G. Prato, A. Orusa, On-line monitoring of the median frequency of the surface EMG power spectrum. IEEE Trans. Biomed. Eng. 1, 1–7 (1985)CrossRef R. Merletti, D. Biey, M. Biey, G. Prato, A. Orusa, On-line monitoring of the median frequency of the surface EMG power spectrum. IEEE Trans. Biomed. Eng. 1, 1–7 (1985)CrossRef
10.
Zurück zum Zitat A. Peyton, Circuit for monitoring the median frequency of the spectrum of the surface EMG signal. IEEE Trans. Biomed. Eng. 5(BME-34), 391–394 (1987) A. Peyton, Circuit for monitoring the median frequency of the spectrum of the surface EMG signal. IEEE Trans. Biomed. Eng. 5(BME-34), 391–394 (1987)
11.
Zurück zum Zitat J. Duchêne, F. Goubel, Acquisition and processing of surface EMG signals with a low-cost microprocessor based system. J. Biomech. 15(10), 791–793 (1982)CrossRef J. Duchêne, F. Goubel, Acquisition and processing of surface EMG signals with a low-cost microprocessor based system. J. Biomech. 15(10), 791–793 (1982)CrossRef
12.
Zurück zum Zitat G. Inbar, O. Paiss, J. Allin, H. Kranz, Monitoring surface EMG spectral changes by the zero crossing rate. Med. Biol. Eng. Comput. 24(1), 10–18 (1986)CrossRef G. Inbar, O. Paiss, J. Allin, H. Kranz, Monitoring surface EMG spectral changes by the zero crossing rate. Med. Biol. Eng. Comput. 24(1), 10–18 (1986)CrossRef
13.
Zurück zum Zitat M.Z. Jamal, Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis in Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges (InTech, Rijeka, 2012) M.Z. Jamal, Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis in Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges (InTech, Rijeka, 2012)
14.
Zurück zum Zitat C.J. De Luca, The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)CrossRef C.J. De Luca, The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)CrossRef
15.
Zurück zum Zitat A. Cechetto, P. Parker, R. Scott, The effects of four time-varying factors on the mean frequency of a myoelectric signal. J. Electromyogr. Kinesiol. 11(5), 347–354 (2001)CrossRef A. Cechetto, P. Parker, R. Scott, The effects of four time-varying factors on the mean frequency of a myoelectric signal. J. Electromyogr. Kinesiol. 11(5), 347–354 (2001)CrossRef
16.
Zurück zum Zitat D. Farina, W. Jensen, M. Akay, Introduction to Neural Engineering for Motor Rehabilitation, vol. 40 (Wiley, New York, 2013) D. Farina, W. Jensen, M. Akay, Introduction to Neural Engineering for Motor Rehabilitation, vol. 40 (Wiley, New York, 2013)
17.
Zurück zum Zitat Y. Blanc, U. Dimanico, Electrode placement in surface electromyography (sEMG) minimal crosstalk area (MCA). Open Rehabil. J. 3, 110–126 (2010)CrossRef Y. Blanc, U. Dimanico, Electrode placement in surface electromyography (sEMG) minimal crosstalk area (MCA). Open Rehabil. J. 3, 110–126 (2010)CrossRef
18.
Zurück zum Zitat E. Zuniga, X. Truong, D. Simons, Effects of skin electrode position on averaged electromyographic potentials. Arch. Phys. Med. Rehabil. 51(5), 264–272 (1970) E. Zuniga, X. Truong, D. Simons, Effects of skin electrode position on averaged electromyographic potentials. Arch. Phys. Med. Rehabil. 51(5), 264–272 (1970)
19.
Zurück zum Zitat J.H. Viitasalo, P.V. Komi, Signal characteristics of EMG with special reference to reproducibility of measurements. Acta Physiol. Scand. 93(4), 531–539 (1975)CrossRef J.H. Viitasalo, P.V. Komi, Signal characteristics of EMG with special reference to reproducibility of measurements. Acta Physiol. Scand. 93(4), 531–539 (1975)CrossRef
20.
Zurück zum Zitat A. Rainoldi, M. Nazzaro, R. Merletti, D. Farina, I. Caruso, S. Gaudenti, Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. J. Electromyogr. Kinesiol. 10(5), 327–336 (2000)CrossRef A. Rainoldi, M. Nazzaro, R. Merletti, D. Farina, I. Caruso, S. Gaudenti, Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. J. Electromyogr. Kinesiol. 10(5), 327–336 (2000)CrossRef
21.
Zurück zum Zitat D. Farina, R. Merletti, M. Nazzaro, I. Caruso, Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 20(6), 62–71 (2001)CrossRef D. Farina, R. Merletti, M. Nazzaro, I. Caruso, Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 20(6), 62–71 (2001)CrossRef
22.
Zurück zum Zitat D.B. Chaffin, Localized muscle fatigue-definition and measurement. J. Occup. Environ. Med. 15(4), 346–354 (1973) D.B. Chaffin, Localized muscle fatigue-definition and measurement. J. Occup. Environ. Med. 15(4), 346–354 (1973)
23.
Zurück zum Zitat H. Piper, Elektrophysiologie menschlicher muskeln (Springer, Berlin, 1912)CrossRef H. Piper, Elektrophysiologie menschlicher muskeln (Springer, Berlin, 1912)CrossRef
24.
Zurück zum Zitat S. Cobb, A. Forbes, Electromyographic studies of muscular fatigue in man. Am. J. Physiol.–Legacy Content 65(2), 234–251 (1923) S. Cobb, A. Forbes, Electromyographic studies of muscular fatigue in man. Am. J. Physiol.–Legacy Content 65(2), 234–251 (1923)
25.
Zurück zum Zitat E. Kuroda, V. Klissouras, J. Milsum, Electrical and metabolic activities and fatigue in human isometric contraction. J. Appl. Physiol. 29(3), 358–367 (1970)CrossRef E. Kuroda, V. Klissouras, J. Milsum, Electrical and metabolic activities and fatigue in human isometric contraction. J. Appl. Physiol. 29(3), 358–367 (1970)CrossRef
26.
Zurück zum Zitat B. Bigland, O. Lippold, The relation between force, velocity and integrated electrical activity in human muscles. J. Physiol. 123(1), 214 (1954) B. Bigland, O. Lippold, The relation between force, velocity and integrated electrical activity in human muscles. J. Physiol. 123(1), 214 (1954)
27.
Zurück zum Zitat R. Harding, R. Sen, Evaluation of total muscular activity by quantification of electromyograms through a summing amplifier. Med. Biol. Eng. 8(4), 343–356 (1970)CrossRef R. Harding, R. Sen, Evaluation of total muscular activity by quantification of electromyograms through a summing amplifier. Med. Biol. Eng. 8(4), 343–356 (1970)CrossRef
28.
Zurück zum Zitat P. Komi, Relationship between muscle tension, EMG and velocity of contraction under concentric and eccentric work, in New Concepts of the Motor Unit, Neuromuscular Disorders, Electromyographic Kinesiology (Karger Publishers, Basel, 1973), pp. 596–606 P. Komi, Relationship between muscle tension, EMG and velocity of contraction under concentric and eccentric work, in New Concepts of the Motor Unit, Neuromuscular Disorders, Electromyographic Kinesiology (Karger Publishers, Basel, 1973), pp. 596–606
29.
Zurück zum Zitat A. Fuglsang-Frederiksen, The utility of interference pattern analysis. Muscle Nerve 23(1), 18–36 (2000)CrossRef A. Fuglsang-Frederiksen, The utility of interference pattern analysis. Muscle Nerve 23(1), 18–36 (2000)CrossRef
30.
Zurück zum Zitat D.A. Gabriel, J.R. Basford, K.-N. An, Assessing fatigue with electromyographic spike parameters. IEEE Eng. Med. Biol. Mag. 20(6), 90–96 (2001)CrossRef D.A. Gabriel, J.R. Basford, K.-N. An, Assessing fatigue with electromyographic spike parameters. IEEE Eng. Med. Biol. Mag. 20(6), 90–96 (2001)CrossRef
31.
Zurück zum Zitat D. Farina, R. Merletti, Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 42(4), 432–445 (2004)CrossRef D. Farina, R. Merletti, Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 42(4), 432–445 (2004)CrossRef
32.
Zurück zum Zitat K. Masuda, T. Masuda, T. Sadoyama, M. Inaki, S. Katsuta, Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 9(1), 39–46 (1999)CrossRef K. Masuda, T. Masuda, T. Sadoyama, M. Inaki, S. Katsuta, Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 9(1), 39–46 (1999)CrossRef
33.
Zurück zum Zitat J. Potvin, L. Bent, A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. J. Electromyogr. Kinesiol. 7(2), 131–139 (1997)CrossRef J. Potvin, L. Bent, A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. J. Electromyogr. Kinesiol. 7(2), 131–139 (1997)CrossRef
34.
Zurück zum Zitat G. Kamen, D. Gabriel, Essentials of Electromyography (Human Kinetics, Champaign, 2010) G. Kamen, D. Gabriel, Essentials of Electromyography (Human Kinetics, Champaign, 2010)
35.
Zurück zum Zitat M. Barbero, R. Merletti, A. Rainoldi, Atlas of Muscle Innervation Zones (Springer, Berlin, 2011) M. Barbero, R. Merletti, A. Rainoldi, Atlas of Muscle Innervation Zones (Springer, Berlin, 2011)
36.
37.
Zurück zum Zitat R. Merletti, L.L. Conte, Advances in processing of surface myoelectric signals: part 1. Med. Biol. Eng. Comput. 33(3), 362–372 (1995)CrossRef R. Merletti, L.L. Conte, Advances in processing of surface myoelectric signals: part 1. Med. Biol. Eng. Comput. 33(3), 362–372 (1995)CrossRef
38.
Zurück zum Zitat H. Broman, G. Bilotto, C.J. De Luca, A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans. Biomed. Eng. 5(BME-32), 341–344 (1985) H. Broman, G. Bilotto, C.J. De Luca, A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans. Biomed. Eng. 5(BME-32), 341–344 (1985)
39.
Zurück zum Zitat R. Merletti, L.R.L. Conte, Surface EMG signal processing during isometric contractions. J. Electromyogr. Kinesiol. 7(4), 241–250 (1997)CrossRef R. Merletti, L.R.L. Conte, Surface EMG signal processing during isometric contractions. J. Electromyogr. Kinesiol. 7(4), 241–250 (1997)CrossRef
40.
Zurück zum Zitat T.-D. Chiueh, P.-Y. Tsai, I.-W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications (Wiley, New York, 2012)CrossRef T.-D. Chiueh, P.-Y. Tsai, I.-W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications (Wiley, New York, 2012)CrossRef
41.
Zurück zum Zitat T.S. Lande, T.G. Constandinou, A. Burdett, C. Toumazou, Running cross-correlation using bitstream processing. Electron. Lett. 43(22), 1181–1183 (2007)CrossRef T.S. Lande, T.G. Constandinou, A. Burdett, C. Toumazou, Running cross-correlation using bitstream processing. Electron. Lett. 43(22), 1181–1183 (2007)CrossRef
42.
Zurück zum Zitat M. Zwarts, T. Van Weerden, H. Haenen, Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur. J. Appl. Physiol. Occup. Physiol. 56(2), 212–216 (1987)CrossRef M. Zwarts, T. Van Weerden, H. Haenen, Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur. J. Appl. Physiol. Occup. Physiol. 56(2), 212–216 (1987)CrossRef
43.
Zurück zum Zitat T. Sadoyama, T. Masuda, H. Miyano, Relationships between muscle fibre conduction velocity and frequency parameters of surface EMG during sustained contraction. Eur. J. Appl. Physiol. Occup. Physiol. 51(2), 247–256 (1983)CrossRef T. Sadoyama, T. Masuda, H. Miyano, Relationships between muscle fibre conduction velocity and frequency parameters of surface EMG during sustained contraction. Eur. J. Appl. Physiol. Occup. Physiol. 51(2), 247–256 (1983)CrossRef
44.
Zurück zum Zitat S. Andreassen, L. Arendt-Nielsen, Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J. Physiol. 391(1), 561–571 (1987)CrossRef S. Andreassen, L. Arendt-Nielsen, Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J. Physiol. 391(1), 561–571 (1987)CrossRef
45.
Zurück zum Zitat T. Sadoyama, T. Masuda, H. Miyata, S. Katsuta, Fibre conduction velocity and fibre composition in human vastus lateralis. Eur. J. Appl. Physiol. Occup. Physiol. 57(6), 767–771 (1988)CrossRef T. Sadoyama, T. Masuda, H. Miyata, S. Katsuta, Fibre conduction velocity and fibre composition in human vastus lateralis. Eur. J. Appl. Physiol. Occup. Physiol. 57(6), 767–771 (1988)CrossRef
46.
Zurück zum Zitat X. Ye, T. Beck, N. Wages, Relationship between innervation zone width and mean muscle fiber conduction velocity during a sustained isometric contraction. J. Musculoskelet. Neuronal Interact. 15(1), 95–102 (2015) X. Ye, T. Beck, N. Wages, Relationship between innervation zone width and mean muscle fiber conduction velocity during a sustained isometric contraction. J. Musculoskelet. Neuronal Interact. 15(1), 95–102 (2015)
47.
Zurück zum Zitat M. Naeije, Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique. Electromyogr. Clin. Neurophysiol. 23, 73–80 (1983) M. Naeije, Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique. Electromyogr. Clin. Neurophysiol. 23, 73–80 (1983)
48.
Zurück zum Zitat S. Henzler, Time-to-digital converter basics, in Time-to-Digital Converters (Springer, Berlin, 2010), pp. 5–18 S. Henzler, Time-to-digital converter basics, in Time-to-Digital Converters (Springer, Berlin, 2010), pp. 5–18
49.
Zurück zum Zitat R. Pallas-Areny, Interference-rejection characteristics of biopotential amplifiers: a comparative analysis. IEEE Trans. Biomed. Eng. 35(11), 953–959 (1988)CrossRef R. Pallas-Areny, Interference-rejection characteristics of biopotential amplifiers: a comparative analysis. IEEE Trans. Biomed. Eng. 35(11), 953–959 (1988)CrossRef
50.
Zurück zum Zitat J.H. Nagel, Biopotential amplifiers. Biomed. Eng. Handb. 1185–1195 (1995) J.H. Nagel, Biopotential amplifiers. Biomed. Eng. Handb. 1185–1195 (1995)
51.
Zurück zum Zitat M.J. Burke, D.T. Gleeson, A micropower dry-electrode ecg preamplifier. IEEE Trans. Biomed. Eng. 47(2), 155–162 (2000)CrossRef M.J. Burke, D.T. Gleeson, A micropower dry-electrode ecg preamplifier. IEEE Trans. Biomed. Eng. 47(2), 155–162 (2000)CrossRef
52.
Zurück zum Zitat E.M. Spinelli, N.H. Martinez, M.A. Mayosky, A single supply biopotential amplifier. Med. Eng. Phys. 23(3), 235–238 (2001)CrossRef E.M. Spinelli, N.H. Martinez, M.A. Mayosky, A single supply biopotential amplifier. Med. Eng. Phys. 23(3), 235–238 (2001)CrossRef
53.
Zurück zum Zitat E.M. Spinelli, N. Martínez, M.A. Mayosky, R. Pallàs-Areny, A novel fully differential biopotential amplifier with dc suppression. IEEE Trans. Biomed. Eng. 51(8), 1444–1448 (2004)CrossRef E.M. Spinelli, N. Martínez, M.A. Mayosky, R. Pallàs-Areny, A novel fully differential biopotential amplifier with dc suppression. IEEE Trans. Biomed. Eng. 51(8), 1444–1448 (2004)CrossRef
54.
Zurück zum Zitat E.M. Spinelli, R. Pallàs-Areny, M.A. Mayosky, Ac-coupled front-end for biopotential measurements. IEEE Trans. Biomed. Eng. 50(3), 391–395 (2003)CrossRef E.M. Spinelli, R. Pallàs-Areny, M.A. Mayosky, Ac-coupled front-end for biopotential measurements. IEEE Trans. Biomed. Eng. 50(3), 391–395 (2003)CrossRef
55.
Zurück zum Zitat R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 w analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 w analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef
56.
Zurück zum Zitat N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef
57.
Zurück zum Zitat R.R. Harrison, C. Charles, A low-power low-noise cmos amplifier for neural recording applications. IEEE J. Solid State Circuits 38(6), 958–965 (2003)CrossRef R.R. Harrison, C. Charles, A low-power low-noise cmos amplifier for neural recording applications. IEEE J. Solid State Circuits 38(6), 958–965 (2003)CrossRef
58.
Zurück zum Zitat R. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 60 uw 60 nv/ hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid State Circuits 42(5), 1100–1110 (2007)CrossRef R. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 60 uw 60 nv/ hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid State Circuits 42(5), 1100–1110 (2007)CrossRef
59.
Zurück zum Zitat R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 200 weight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid State Circuits 43(12), 3025–3038 (2008)CrossRef R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 200 weight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid State Circuits 43(12), 3025–3038 (2008)CrossRef
60.
Zurück zum Zitat T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, A. Kelly, A 2 uw 100 nv/rthz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)CrossRef T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, A. Kelly, A 2 uw 100 nv/rthz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)CrossRef
61.
Zurück zum Zitat C.J. De Luca, L. Donald Gilmore, M. Kuznetsov, S.H. Roy, Filtering the surface EMG signal: movement artifact and line noise contamination. J. Biomech. 43(8), 1573–1579 (2010)CrossRef C.J. De Luca, L. Donald Gilmore, M. Kuznetsov, S.H. Roy, Filtering the surface EMG signal: movement artifact and line noise contamination. J. Biomech. 43(8), 1573–1579 (2010)CrossRef
Metadaten
Titel
Microelectronics for Muscle Fatigue Monitoring Through Surface EMG
verfasst von
Pantelis Georgiou
Ermis Koutsos
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67723-1_6

Neuer Inhalt