Skip to main content

2013 | OriginalPaper | Buchkapitel

Microfluidic Devices for Quantifying the Role of Soluble Gradients in Early Angiogenesis

verfasst von : Patrick Benitez, Sarah Heilshorn

Erschienen in: Mechanical and Chemical Signaling in Angiogenesis

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Early angiogenesis, as defined by endothelial polarization and directional sprouting, is regulated by gradients of soluble factors in addition to a multitude of other anisotropic cues including interstitial flow, insoluble gradients, and topography of the extracellular matrix (ECM). Adding to this complexity, other microenvironmental inputs, such as matrix density and rigidity, are known to modulate the extent to which vascular endothelial cells react to these anisotropic cues. Given this complexity, novel platforms are needed to decouple and systematically assess signals regulating early angiogenesis. To this end, we discuss a microfluidic device that achieves stable, matrix-independent soluble gradients via passive diffusion, which shields the culture chamber from shear-induced anisotropy. These devices enable direct time-lapse imaging of single cell and collective cell phenomena within both two-dimensional (2D) and three-dimensional (3D) cultures. These experimental platforms have been used to quantify the growth factor concentration requirements that induce endothelial cell chemotaxis, to identify previously unknown regulators of brain angiogenesis, to screen biomaterials for their angiogenic potential, and to investigate the navigational ability of nascent sprouts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zeng, G., et al.: Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109(4), 1345–1352 (2007)CrossRef Zeng, G., et al.: Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109(4), 1345–1352 (2007)CrossRef
2.
Zurück zum Zitat MacGabhann, F., Ji, J.W., Popel, A.S.: VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102(2), 722–734 (2007)CrossRef MacGabhann, F., Ji, J.W., Popel, A.S.: VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102(2), 722–734 (2007)CrossRef
3.
Zurück zum Zitat Abramsson, A., Lindblom, P., Betsholtz, C.: Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003) Abramsson, A., Lindblom, P., Betsholtz, C.: Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003)
4.
Zurück zum Zitat Chen, R.R., et al.: Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24(2), 258–264 (2007)CrossRef Chen, R.R., et al.: Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24(2), 258–264 (2007)CrossRef
5.
Zurück zum Zitat Dike, L.E., et al.: Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Anim 35(8), 441–448 (1999)CrossRef Dike, L.E., et al.: Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Anim 35(8), 441–448 (1999)CrossRef
6.
Zurück zum Zitat Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)CrossRef Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)CrossRef
7.
Zurück zum Zitat Dvorak, H.F., et al.: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J. Exp. Med. 174(5), 1275–1278 (1991)CrossRef Dvorak, H.F., et al.: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J. Exp. Med. 174(5), 1275–1278 (1991)CrossRef
8.
Zurück zum Zitat Barkefors, I., et al.: Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J. Biol. Chem. 283(20), 13905–13912 (2008)CrossRef Barkefors, I., et al.: Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J. Biol. Chem. 283(20), 13905–13912 (2008)CrossRef
9.
Zurück zum Zitat Dye, J., et al.: Distinct patterns of microvascular endothelial cell morphology are determined by extracellular matrix composition. Endothelium-J Endoth 11(3–4), 151–167 (2004)CrossRef Dye, J., et al.: Distinct patterns of microvascular endothelial cell morphology are determined by extracellular matrix composition. Endothelium-J Endoth 11(3–4), 151–167 (2004)CrossRef
10.
Zurück zum Zitat Gospodarowicz, D., Vlodavsky, I., Savion, N.: The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct. Cell 13(3), 339–372 (1980)CrossRef Gospodarowicz, D., Vlodavsky, I., Savion, N.: The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct. Cell 13(3), 339–372 (1980)CrossRef
11.
Zurück zum Zitat Nehls, V., Herrmann, R.: The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc. Res. 51(3), 347–364 (1996)CrossRef Nehls, V., Herrmann, R.: The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc. Res. 51(3), 347–364 (1996)CrossRef
12.
Zurück zum Zitat Ruoslahti, E.: Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83–90 (2002)CrossRef Ruoslahti, E.: Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83–90 (2002)CrossRef
13.
Zurück zum Zitat Ogunshola, O.: Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Dev. Brain Res. 119(1), 139–153 (2000)CrossRef Ogunshola, O.: Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Dev. Brain Res. 119(1), 139–153 (2000)CrossRef
14.
Zurück zum Zitat Laschke, M.W., Vollmar, B., Menger, M.D.: Inosculation: connecting the life-sustaining pipelines. Tissue Eng. Part B-Rev 15(4), 455–465 (2009)CrossRef Laschke, M.W., Vollmar, B., Menger, M.D.: Inosculation: connecting the life-sustaining pipelines. Tissue Eng. Part B-Rev 15(4), 455–465 (2009)CrossRef
15.
Zurück zum Zitat Tillet, E., et al.: N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res. 310(2), 392–400 (2005)CrossRef Tillet, E., et al.: N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res. 310(2), 392–400 (2005)CrossRef
16.
Zurück zum Zitat Boyden, S.: The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)CrossRef Boyden, S.: The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)CrossRef
17.
Zurück zum Zitat Zigmond, S.H.: Orientation chamber in chemotaxis. Methods Enzymol. 162, 65–72 (1988)CrossRef Zigmond, S.H.: Orientation chamber in chemotaxis. Methods Enzymol. 162, 65–72 (1988)CrossRef
18.
Zurück zum Zitat Zicha, D., Dunn, G.A., Brown, A.F.: A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(4), 769–775 (1991) Zicha, D., Dunn, G.A., Brown, A.F.: A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(4), 769–775 (1991)
19.
Zurück zum Zitat Blow, N.: Cell migration: our protruding knowledge. Nat. Methods 4(7), 589–594 (2007)CrossRef Blow, N.: Cell migration: our protruding knowledge. Nat. Methods 4(7), 589–594 (2007)CrossRef
20.
Zurück zum Zitat Pankov, R., et al.: A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170(5), 793–802 (2005)CrossRef Pankov, R., et al.: A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170(5), 793–802 (2005)CrossRef
21.
Zurück zum Zitat Chen, R.R., et al.: Integrated approach to designing growth factor delivery systems. FASEB J 21(14), 3896–3903 (2007)CrossRef Chen, R.R., et al.: Integrated approach to designing growth factor delivery systems. FASEB J 21(14), 3896–3903 (2007)CrossRef
22.
Zurück zum Zitat Lin, F., Butcher, E.C.: T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11), 1462–1469 (2006)CrossRef Lin, F., Butcher, E.C.: T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11), 1462–1469 (2006)CrossRef
23.
Zurück zum Zitat Walker, G.M.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)CrossRef Walker, G.M.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)CrossRef
24.
Zurück zum Zitat Dertinger, S.K.W., et al.: Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001)CrossRef Dertinger, S.K.W., et al.: Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001)CrossRef
25.
Zurück zum Zitat Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Nat. Acad. Sci. U.S.A. 108(37), 15342–15347 (2011)CrossRef Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Nat. Acad. Sci. U.S.A. 108(37), 15342–15347 (2011)CrossRef
26.
Zurück zum Zitat Urbich, C.: Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha5 and beta1. Arterioscler. Thromb. Vasc. Biol. 22(1), 69–75 (2002)CrossRef Urbich, C.: Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha5 and beta1. Arterioscler. Thromb. Vasc. Biol. 22(1), 69–75 (2002)CrossRef
27.
Zurück zum Zitat Saadi, W., et al.: Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)CrossRefMathSciNet Saadi, W., et al.: Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)CrossRefMathSciNet
28.
Zurück zum Zitat Kim, T., Pinelis, M., Maharbiz, M.M.: Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009)CrossRef Kim, T., Pinelis, M., Maharbiz, M.M.: Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009)CrossRef
29.
Zurück zum Zitat Cheng, S.-Y., et al.: A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007)CrossRef Cheng, S.-Y., et al.: A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007)CrossRef
30.
Zurück zum Zitat Shamloo, A., et al.: Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8), 1292–1299 (2008)CrossRef Shamloo, A., et al.: Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8), 1292–1299 (2008)CrossRef
31.
Zurück zum Zitat Berra, E., et al.: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22(16), 4082–4090 (2003)CrossRef Berra, E., et al.: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22(16), 4082–4090 (2003)CrossRef
32.
Zurück zum Zitat Neufeld, G., et al.: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1), 9–22 (1999)MathSciNet Neufeld, G., et al.: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1), 9–22 (1999)MathSciNet
33.
Zurück zum Zitat Helm, C.-L.E., et al.: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Nat. Acad. Sci. U.S.A. 102(44), 15779–15784 (2005)CrossRef Helm, C.-L.E., et al.: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Nat. Acad. Sci. U.S.A. 102(44), 15779–15784 (2005)CrossRef
34.
Zurück zum Zitat Hiratsuka, S., et al.: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4), 289–300 (2002)CrossRef Hiratsuka, S., et al.: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4), 289–300 (2002)CrossRef
35.
Zurück zum Zitat Pepper, M.S., et al.: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181(2), 902–906 (1991)CrossRef Pepper, M.S., et al.: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181(2), 902–906 (1991)CrossRef
36.
Zurück zum Zitat Hawinkels, L.J.A.C., et al.: VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur. J. Cancer 44(13), 1904–1913 (2008)CrossRef Hawinkels, L.J.A.C., et al.: VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur. J. Cancer 44(13), 1904–1913 (2008)CrossRef
37.
Zurück zum Zitat Esser, S., et al.: Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111(13), 1853–1865 (1998) Esser, S., et al.: Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111(13), 1853–1865 (1998)
38.
Zurück zum Zitat Fleury, M.E., Boardman, K.C., Swartz, M.A.: Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91(1), 113–121 (2006)CrossRef Fleury, M.E., Boardman, K.C., Swartz, M.A.: Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91(1), 113–121 (2006)CrossRef
39.
Zurück zum Zitat Almqvist, N., et al.: Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86(3), 1753–1762 (2004)CrossRef Almqvist, N., et al.: Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86(3), 1753–1762 (2004)CrossRef
40.
Zurück zum Zitat Kiosses, W.B., et al.: Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3(3), 316–320 (2001)CrossRef Kiosses, W.B., et al.: Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3(3), 316–320 (2001)CrossRef
41.
Zurück zum Zitat Rousseau, S., et al.: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18), 2169–2177 (1997)CrossRef Rousseau, S., et al.: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18), 2169–2177 (1997)CrossRef
42.
Zurück zum Zitat Podar, K., et al.: Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 64(20), 7500–7506 (2004)CrossRef Podar, K., et al.: Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 64(20), 7500–7506 (2004)CrossRef
43.
Zurück zum Zitat Caswell, P.T., Vadrevu, S., Norman, J.C.: Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10(12), 843–853 (2009)CrossRef Caswell, P.T., Vadrevu, S., Norman, J.C.: Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10(12), 843–853 (2009)CrossRef
44.
Zurück zum Zitat Navarro, A., Anand-Apte, B., Parat, M.-O.: A role for caveolae in cell migration. FASEB J 18(15), 1801–1811 (2004)CrossRef Navarro, A., Anand-Apte, B., Parat, M.-O.: A role for caveolae in cell migration. FASEB J 18(15), 1801–1811 (2004)CrossRef
45.
Zurück zum Zitat Gerhardt, H., et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161(6), 1163–1177 (2003)CrossRef Gerhardt, H., et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161(6), 1163–1177 (2003)CrossRef
46.
Zurück zum Zitat Pollock, A.S.: Matrix metalloproteinase 2(gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J. Biol. Chem. 271(25), 15074–15083 (1996)CrossRef Pollock, A.S.: Matrix metalloproteinase 2(gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J. Biol. Chem. 271(25), 15074–15083 (1996)CrossRef
47.
Zurück zum Zitat Iwamoto, Y., et al.: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830), 1132–1134 (1987)CrossRef Iwamoto, Y., et al.: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830), 1132–1134 (1987)CrossRef
48.
Zurück zum Zitat Suchting, S., et al.: The notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Nat. Acad. Sci. U.S.A. 104(9), 3225–3230 (2007)CrossRef Suchting, S., et al.: The notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Nat. Acad. Sci. U.S.A. 104(9), 3225–3230 (2007)CrossRef
49.
Zurück zum Zitat Yana, I., et al.: Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120(9), 1607–1614 (2007)CrossRef Yana, I., et al.: Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120(9), 1607–1614 (2007)CrossRef
50.
Zurück zum Zitat Ausprunk, D.H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14(1), 53–65 (1977)CrossRef Ausprunk, D.H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14(1), 53–65 (1977)CrossRef
51.
Zurück zum Zitat Jakobsson, L., et al.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010)CrossRef Jakobsson, L., et al.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010)CrossRef
52.
Zurück zum Zitat Funahashi, Y., et al.: Notch regulates the angiogenic response via induction of VEGFR-1. J. Angiogenes. Res. 2(1), 3 (2010)CrossRef Funahashi, Y., et al.: Notch regulates the angiogenic response via induction of VEGFR-1. J. Angiogenes. Res. 2(1), 3 (2010)CrossRef
53.
Zurück zum Zitat Krueger, J., et al.: Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10), 2111–2120 (2011)CrossRefMathSciNet Krueger, J., et al.: Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10), 2111–2120 (2011)CrossRefMathSciNet
54.
Zurück zum Zitat Cha, Y.R., Weinstein, B.M.: Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Res. C 81(4), 286–296 (2007)CrossRef Cha, Y.R., Weinstein, B.M.: Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Res. C 81(4), 286–296 (2007)CrossRef
55.
Zurück zum Zitat Ruhrberg, C., Gerhardt, H.: VEGF in Development, pp. 68–78. Springer, New York (2008) Ruhrberg, C., Gerhardt, H.: VEGF in Development, pp. 68–78. Springer, New York (2008)
56.
Zurück zum Zitat Asahara, T., et al.: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83(3), 233–240 (1998)CrossRef Asahara, T., et al.: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83(3), 233–240 (1998)CrossRef
57.
Zurück zum Zitat Maisonpierre, P.C., et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60 (1997)CrossRef Maisonpierre, P.C., et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60 (1997)CrossRef
58.
Zurück zum Zitat Das, A.: Angiopoietin/tek interactions regulate MMP-9 expression and retinal neovascularization. Lab. Invest. 83(11), 1637–1645 (2003)CrossRef Das, A.: Angiopoietin/tek interactions regulate MMP-9 expression and retinal neovascularization. Lab. Invest. 83(11), 1637–1645 (2003)CrossRef
59.
Zurück zum Zitat Clark, E.R.: Studies on the growth of blood-vessels in the tail of the frog larva by observation and experiment on the living animal. Am. J. Anat. 23(1), 37–88 (1918)CrossRef Clark, E.R.: Studies on the growth of blood-vessels in the tail of the frog larva by observation and experiment on the living animal. Am. J. Anat. 23(1), 37–88 (1918)CrossRef
60.
Zurück zum Zitat Augustin, H.G., et al.: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10(3), 165–177 (2009)CrossRef Augustin, H.G., et al.: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10(3), 165–177 (2009)CrossRef
61.
Zurück zum Zitat Allt, G., Lawrenson, J.G.: Pericytes: cell biology and pathology. Cells Tissues Organs 169(1), 1–11 (2001)CrossRef Allt, G., Lawrenson, J.G.: Pericytes: cell biology and pathology. Cells Tissues Organs 169(1), 1–11 (2001)CrossRef
62.
Zurück zum Zitat Bergers, G., Song, S.: The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7(4), 452–464 (2005)CrossRef Bergers, G., Song, S.: The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7(4), 452–464 (2005)CrossRef
63.
Zurück zum Zitat Hellstrom, M., et al.: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14), 3047–3055 (1999) Hellstrom, M., et al.: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14), 3047–3055 (1999)
64.
Zurück zum Zitat Rajantie, I., et al.: Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7), 2084–2086 (2004)CrossRef Rajantie, I., et al.: Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7), 2084–2086 (2004)CrossRef
65.
Zurück zum Zitat Goldfinger, L.E., et al.: Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circ. Res. 103(2), 177–185 (2008)CrossRef Goldfinger, L.E., et al.: Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circ. Res. 103(2), 177–185 (2008)CrossRef
66.
Zurück zum Zitat Walker, G.M., et al.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)CrossRef Walker, G.M., et al.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)CrossRef
67.
Zurück zum Zitat van Haastert, P.J.M., Postma, M.: Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93(5), 1787–1796 (2007)CrossRef van Haastert, P.J.M., Postma, M.: Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93(5), 1787–1796 (2007)CrossRef
68.
Zurück zum Zitat Palecek, S.P., et al.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997)CrossRef Palecek, S.P., et al.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997)CrossRef
69.
Zurück zum Zitat Shamloo, A., Heilshorn, S.C.: Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22), 3061–3068 (2010)CrossRef Shamloo, A., Heilshorn, S.C.: Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22), 3061–3068 (2010)CrossRef
70.
Zurück zum Zitat Shamloo A, Xu H, Heilshorn SC. Mechanisms of VEGF-induced path-finding by endothelial sprouts in biomaterials. Tissue Engineering Part A. 18:320–330CrossRef Shamloo A, Xu H, Heilshorn SC. Mechanisms of VEGF-induced path-finding by endothelial sprouts in biomaterials. Tissue Engineering Part A. 18:320–330CrossRef
71.
Zurück zum Zitat Vickerman, V., et al.: Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9), 1468–1477 (2008)CrossRef Vickerman, V., et al.: Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9), 1468–1477 (2008)CrossRef
72.
Zurück zum Zitat Kuhnert, F., et al.: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006), 985–989 (2010)CrossRef Kuhnert, F., et al.: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006), 985–989 (2010)CrossRef
73.
Zurück zum Zitat Larrivée, B., et al.: Guidance of vascular development: lessons from the nervous system. Circ. Res. 104(4), 428–441 (2009)CrossRef Larrivée, B., et al.: Guidance of vascular development: lessons from the nervous system. Circ. Res. 104(4), 428–441 (2009)CrossRef
74.
Zurück zum Zitat Ruvinov, E., Leor, J., Cohen, S.: The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010)CrossRef Ruvinov, E., Leor, J., Cohen, S.: The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010)CrossRef
75.
Zurück zum Zitat Chu, H., et al.: Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Nat. Acad. Sci. U.S.A. 108(33), 13444–13449 (2011)CrossRef Chu, H., et al.: Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Nat. Acad. Sci. U.S.A. 108(33), 13444–13449 (2011)CrossRef
76.
Zurück zum Zitat Golub, J.S., et al.: Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol-Heart Circ. Physiol. 298(6), H1959–H1965 (2010)CrossRef Golub, J.S., et al.: Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol-Heart Circ. Physiol. 298(6), H1959–H1965 (2010)CrossRef
77.
Zurück zum Zitat Borselli, C., et al.: Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3287–3292 (2010)CrossRef Borselli, C., et al.: Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3287–3292 (2010)CrossRef
78.
Zurück zum Zitat Hao, X., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef Hao, X., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef
79.
Zurück zum Zitat Jones, D.S., Tsai, P.-C., Cochran, J.R.: Engineering hepatocyte growth factor fragments with high stability and activity as met receptor agonists and antagonists. Proc. Nat. Acad. Sci. U.S.A. 108(32), 13035–13040 (2011)CrossRef Jones, D.S., Tsai, P.-C., Cochran, J.R.: Engineering hepatocyte growth factor fragments with high stability and activity as met receptor agonists and antagonists. Proc. Nat. Acad. Sci. U.S.A. 108(32), 13035–13040 (2011)CrossRef
80.
Zurück zum Zitat Wong Po Foo, C.T.S., et al.: Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Nat. Acad. Sci. U.S.A. 106(52), 22067–22072 (2009)CrossRef Wong Po Foo, C.T.S., et al.: Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Nat. Acad. Sci. U.S.A. 106(52), 22067–22072 (2009)CrossRef
81.
Zurück zum Zitat Lin, C.–.C., Anseth, K.S.: Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Nat. Acad. Sci. U.S.A. 108(16), 6380–6385 (2011)CrossRef Lin, C.–.C., Anseth, K.S.: Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Nat. Acad. Sci. U.S.A. 108(16), 6380–6385 (2011)CrossRef
82.
Zurück zum Zitat Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)CrossRef Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)CrossRef
83.
Zurück zum Zitat Ramjaun, A.R., Hodivala-Dilke, K.: The role of cell adhesion pathways in angiogenesis. Int. J. Biochem. Cell Biol. 41(3), 521–530 (2009)CrossRef Ramjaun, A.R., Hodivala-Dilke, K.: The role of cell adhesion pathways in angiogenesis. Int. J. Biochem. Cell Biol. 41(3), 521–530 (2009)CrossRef
84.
Zurück zum Zitat Hoffmann, J.C., West, J.L.: Three-dimensional photolithographic patterning of multiple bioactive ligands in poly (ethylene glycol) hydrogels. Soft Matter 6(20), 5056 (2010)CrossRef Hoffmann, J.C., West, J.L.: Three-dimensional photolithographic patterning of multiple bioactive ligands in poly (ethylene glycol) hydrogels. Soft Matter 6(20), 5056 (2010)CrossRef
85.
Zurück zum Zitat Ifkovits, J.L., Sundararaghavan, H.G., Burdick, J.A.: Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture. J. Vis. Exp. 32, 1589 (2009) Ifkovits, J.L., Sundararaghavan, H.G., Burdick, J.A.: Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture. J. Vis. Exp. 32, 1589 (2009)
86.
Zurück zum Zitat Miller, E.D., et al.: Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32(11), 2775–2785 (2011)CrossRef Miller, E.D., et al.: Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32(11), 2775–2785 (2011)CrossRef
87.
Zurück zum Zitat Park, J., et al.: Simple haptotactic gradient generation within a triangular microfluidic channel. Lab Chip 10(16), 2130–2138 (2010)CrossRef Park, J., et al.: Simple haptotactic gradient generation within a triangular microfluidic channel. Lab Chip 10(16), 2130–2138 (2010)CrossRef
88.
Zurück zum Zitat Kawano, T., Kidoaki, S.: Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32(11), 2725–2733 (2011)CrossRef Kawano, T., Kidoaki, S.: Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32(11), 2725–2733 (2011)CrossRef
89.
Zurück zum Zitat Golomb, B.A., Dang, T.T., Criqui, M.H.: Peripheral arterial disease: morbidity and mortality implications. Circulation 114(7), 688–699 (2006)CrossRef Golomb, B.A., Dang, T.T., Criqui, M.H.: Peripheral arterial disease: morbidity and mortality implications. Circulation 114(7), 688–699 (2006)CrossRef
90.
Zurück zum Zitat Fox, S.B., et al.: Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, chalkley count, and computer image analysis. J. Pathol. 177(3), 275–283 (1995)CrossRef Fox, S.B., et al.: Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, chalkley count, and computer image analysis. J. Pathol. 177(3), 275–283 (1995)CrossRef
91.
Zurück zum Zitat Papo, N., et al.: Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and {alpha}v{beta}3 integrin. Proc. Nat. Acad. Sci. U.S.A. 108(34), 14067–14072 (2011)CrossRef Papo, N., et al.: Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and {alpha}v{beta}3 integrin. Proc. Nat. Acad. Sci. U.S.A. 108(34), 14067–14072 (2011)CrossRef
92.
Zurück zum Zitat Yang, F., et al.: Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3317–3322 (2010)CrossRef Yang, F., et al.: Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3317–3322 (2010)CrossRef
Metadaten
Titel
Microfluidic Devices for Quantifying the Role of Soluble Gradients in Early Angiogenesis
verfasst von
Patrick Benitez
Sarah Heilshorn
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30856-7_3

Neuer Inhalt