Skip to main content

2013 | OriginalPaper | Buchkapitel

16. Microhotplates and Integration with Metal-Oxide Nanomaterials

verfasst von : Emanuele Barborini

Erschienen in: Metal Oxide Nanomaterials for Chemical Sensors

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current scenario of metal-oxide gas sensing shows, on one side, highly innovative silicon-based platforms, as outcomes of microelectronic and micromachining manufacturing processes, while on the other side, several techniques and methods for the synthesis of the metal-oxide active layers in the form of nanoporous-nanostructured coatings. The high specific surface area of nanoporous coatings improves the interaction with the atmosphere, while the nanostructure offers characteristic surface-dependent electrical properties. Changes in these electrical properties upon gas exposure and interfacial chemical reactions allow for the development of novel, nano-enhanced gas sensors. The base element of innovative micromachined platforms for gas sensing is the microhotplate. Although microhotplates have the same functional parts of traditional devices (integrated heater, electrodes for resistance readout), micromachining provides considerable improvements. These include, for example, the 2–3 orders of magnitude reduction in power consumption for heating: a feature that may disclose the possibility for remote powering through batteries or photovoltaic cells. Moreover, microhotplates originate from the manufacturing track of microelectronics, hence the concept of “system integration” turns out straightforwardly. Within this perspective, the microhotplate may be considered as just an individual component of a many-element sensing platform, including for example, other transducers, or even on-board front-end electronics. Integration concepts are also needed for optimizing the functionalization of the microhotplate with the metal-oxide nanostructured sensing layer, whose batch deposition should become one step of a device production pipeline. As two beautiful countries separated by the sea, with just few bridges in between, difficulties still exist from the point of view of the integration of metal-oxide nanomaterials on microhotplates and micromachined platforms in general. In fact, although many different techniques for the production of metal-oxide nanomaterials have been developed so far, each one of them suffers difficulties, at various degrees, with respect to the fundamental step of microhotplate functionalization. For example, the high temperature step required by certain techniques for stoichiometric oxide synthesis, may be incompatible with microhotplate safety, while the mechanical stress during deposition may result in microhotplate destruction and a subsequent low production yield. The chapter will describe the concepts and the technologies behind microhotplates manufacturing with respect to drawings adopted, chosen materials, and system integration approaches. Techniques and methods for metal-oxide nanomaterial production will be reviewed, highlighting weaknesses and strength points, once they would be employed for microhotplate functionalization. Recent developments on the use of nanoparticle beams to directly deposit nanoporous coatings on microhotplate batches will be included: besides providing thermal and mechanical compatibility with microhotplates, these methods also offer the possibility to synthesize a wide group of different metal-oxides, which is beneficial for an array approach to gas sensing. Relevant examples of sensing performances of microhotplates-based devices will be reported as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Simon I, Bârsan N, Bauera M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26CrossRef Simon I, Bârsan N, Bauera M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26CrossRef
2.
Zurück zum Zitat Briand D, Krauss A, van der Schoot B, Weimar U, Barsan N, Gopel W, de Rooij NF (2000) Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens Actuators B 68:223–233CrossRef Briand D, Krauss A, van der Schoot B, Weimar U, Barsan N, Gopel W, de Rooij NF (2000) Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens Actuators B 68:223–233CrossRef
3.
Zurück zum Zitat Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE, Walton RM, Suehle JS, Panchapakesan B, DeVoe DL (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B 77:579–591CrossRef Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE, Walton RM, Suehle JS, Panchapakesan B, DeVoe DL (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B 77:579–591CrossRef
4.
Zurück zum Zitat Meijer G, Herwaarden A (1994) Thermal sensors, sensors series. Institute of Physics Publishing, Bristol and Philadelphia Meijer G, Herwaarden A (1994) Thermal sensors, sensors series. Institute of Physics Publishing, Bristol and Philadelphia
5.
Zurück zum Zitat Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD, Martinez CJ, Montgomery CB, Semancik S (2007) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B 121:282–294CrossRef Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD, Martinez CJ, Montgomery CB, Semancik S (2007) The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens Actuators B 121:282–294CrossRef
6.
Zurück zum Zitat Adami A, Lorenzelli L, Guarnieri V, Francioso L, Forleo A, Agnusdei G, Taurino AM, Zen M, Siciliano P (2006) A WO3-based gas sensor array with linear temperature gradient for wine quality monitoring. Sens Actuators B 117:115–122CrossRef Adami A, Lorenzelli L, Guarnieri V, Francioso L, Forleo A, Agnusdei G, Taurino AM, Zen M, Siciliano P (2006) A WO3-based gas sensor array with linear temperature gradient for wine quality monitoring. Sens Actuators B 117:115–122CrossRef
7.
Zurück zum Zitat Raman B, Meier DC, Evju JK, Semancik S (2009) Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens Actuators B 137:617–629CrossRef Raman B, Meier DC, Evju JK, Semancik S (2009) Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens Actuators B 137:617–629CrossRef
8.
Zurück zum Zitat Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. J Anal Chem 365(4):287–304 Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. J Anal Chem 365(4):287–304
9.
Zurück zum Zitat Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34:R125–R149CrossRef Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34:R125–R149CrossRef
10.
Zurück zum Zitat Ivanov P, Llobet E, Vergara A, Stankova M, Vilanova X, Hubalek J, Gracia I, Cané C, Correig X (2005) Towards a micro-system for monitoring ethylene in warehouses. Sens Actuators B 111–112:63–70CrossRef Ivanov P, Llobet E, Vergara A, Stankova M, Vilanova X, Hubalek J, Gracia I, Cané C, Correig X (2005) Towards a micro-system for monitoring ethylene in warehouses. Sens Actuators B 111–112:63–70CrossRef
11.
Zurück zum Zitat Afridi MY, Suehle JS, Zaghloul ME, Berning DW, Hefner AR, Cavicchi RE, Semancik S, Montgomery CB, Taylor CJ (2002) A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens J 2(6):644–655CrossRef Afridi MY, Suehle JS, Zaghloul ME, Berning DW, Hefner AR, Cavicchi RE, Semancik S, Montgomery CB, Taylor CJ (2002) A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens J 2(6):644–655CrossRef
12.
Zurück zum Zitat Graf M, Barrettino D, Zimmermann M, Hierlemann A, Baltes H, Hahn S, Bârsan N, Weimar U (2004) CMOS monolithic metal–oxide sensor system comprising a microhotplate and associated circuitry. IEEE Sens J 4(1):9–16CrossRef Graf M, Barrettino D, Zimmermann M, Hierlemann A, Baltes H, Hahn S, Bârsan N, Weimar U (2004) CMOS monolithic metal–oxide sensor system comprising a microhotplate and associated circuitry. IEEE Sens J 4(1):9–16CrossRef
13.
Zurück zum Zitat Suehle J, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using C-MOS micro-hotplates and in situ processing. IEEE Electron Device Lett 14:118–120CrossRef Suehle J, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using C-MOS micro-hotplates and in situ processing. IEEE Electron Device Lett 14:118–120CrossRef
14.
Zurück zum Zitat Graf M, Gurlo A, Barsan N, Weimar U, Hierlemann A (2006) Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J Nanopart Res 8:823–839CrossRef Graf M, Gurlo A, Barsan N, Weimar U, Hierlemann A (2006) Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J Nanopart Res 8:823–839CrossRef
15.
Zurück zum Zitat Su M, Li SY, Dravid VP (2003) Miniaturized chemical multiplexed sensor array. J Am Chem Soc 125:9930–9931CrossRef Su M, Li SY, Dravid VP (2003) Miniaturized chemical multiplexed sensor array. J Am Chem Soc 125:9930–9931CrossRef
16.
Zurück zum Zitat Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Pignatel GU, Vasiliev AA, Pisliakov AV (2001) Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens Actuators B 77:95–99CrossRef Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Pignatel GU, Vasiliev AA, Pisliakov AV (2001) Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens Actuators B 77:95–99CrossRef
17.
Zurück zum Zitat Vincenzi D, Butturi MA, Stefancich M, Malagu C, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Vasiliev AA, Pisliakov AV (2001) Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films 391:288–292CrossRef Vincenzi D, Butturi MA, Stefancich M, Malagu C, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Vasiliev AA, Pisliakov AV (2001) Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films 391:288–292CrossRef
18.
Zurück zum Zitat Riviere B, Viricelle JP, Pijolat C (2003) Development of tin oxide material by screen-printing technology for micromachined gas sensors. Sens Actuators B 93:531–537CrossRef Riviere B, Viricelle JP, Pijolat C (2003) Development of tin oxide material by screen-printing technology for micromachined gas sensors. Sens Actuators B 93:531–537CrossRef
19.
Zurück zum Zitat Viricelle JP, Pijolat C, Riviere B, Rotureau D, Briand D, de Rooij NF (2006) Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sens Actuators B 118:263–268CrossRef Viricelle JP, Pijolat C, Riviere B, Rotureau D, Briand D, de Rooij NF (2006) Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sens Actuators B 118:263–268CrossRef
20.
Zurück zum Zitat Jimenez I, Cirera A, Cornet A, Morante JR, Gracia I, Cané C (2002) Pulverisation method for active layer coating on microsystems. Sens Actuators B 84:78–82CrossRef Jimenez I, Cirera A, Cornet A, Morante JR, Gracia I, Cané C (2002) Pulverisation method for active layer coating on microsystems. Sens Actuators B 84:78–82CrossRef
21.
Zurück zum Zitat Stankova M, Ivanov P, Llobet E, Brezmes J, Vilanova X, Gràcia I, Cané C, Hubalek J, Malysz K, Correig X (2004) Sputtered and screen-printed metal oxide-based integrated microsensor arrays for the quantitative analysis of gas mixtures. Sens Actuators B 103:23–30CrossRef Stankova M, Ivanov P, Llobet E, Brezmes J, Vilanova X, Gràcia I, Cané C, Hubalek J, Malysz K, Correig X (2004) Sputtered and screen-printed metal oxide-based integrated microsensor arrays for the quantitative analysis of gas mixtures. Sens Actuators B 103:23–30CrossRef
22.
Zurück zum Zitat Francioso L, Russo M, Taurino AM, Siciliano P (2006) Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: towards silicon technology integration. Sens Actuators B 119:159–166CrossRef Francioso L, Russo M, Taurino AM, Siciliano P (2006) Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: towards silicon technology integration. Sens Actuators B 119:159–166CrossRef
23.
Zurück zum Zitat Smith DL (1995) Thin-film deposition: principles and practice. McGraw-Hill Professional, New York Smith DL (1995) Thin-film deposition: principles and practice. McGraw-Hill Professional, New York
24.
Zurück zum Zitat Martin PM (2009) Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew—Elsevier, Oxford) Martin PM (2009) Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew—Elsevier, Oxford)
25.
Zurück zum Zitat Chrisey DB, Hubler GK (1994) Pulsed laser deposition of thin films. Wiley-interscience, Hoboken New Jersey Chrisey DB, Hubler GK (1994) Pulsed laser deposition of thin films. Wiley-interscience, Hoboken New Jersey
26.
Zurück zum Zitat Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing. William Andrew—Elsevier, Oxford Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing. William Andrew—Elsevier, Oxford
27.
Zurück zum Zitat Semancik S, Cavicchi RE (1991) The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin Solid Films 206:81–87CrossRef Semancik S, Cavicchi RE (1991) The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin Solid Films 206:81–87CrossRef
28.
Zurück zum Zitat Cavicchi RE, Suehle JS, Kreider KG, Shomaker BL, Small JA, Gaitan M, Chaparala P (1995) Growth of SnO2 films on micromachined hotplates. Appl Phys Lett 66:812–814CrossRef Cavicchi RE, Suehle JS, Kreider KG, Shomaker BL, Small JA, Gaitan M, Chaparala P (1995) Growth of SnO2 films on micromachined hotplates. Appl Phys Lett 66:812–814CrossRef
29.
Zurück zum Zitat Milani P, Iannotta S (1999) Cluster beam synthesis of nanostructured materials. Springer, Berlin Milani P, Iannotta S (1999) Cluster beam synthesis of nanostructured materials. Springer, Berlin
30.
Zurück zum Zitat Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D 39:R439–R459CrossRef Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D 39:R439–R459CrossRef
31.
Zurück zum Zitat Barborini E, Vinati S, Leccardi M, Repetto P, Bertolini G, Rorato O, Lorenzelli L, Decarli M, Guarnieri V, Ducati C, Milani P (2008) Batch fabrication of metal oxide sensors on micro-hotplates. J Micromech Microeng 18:055015CrossRef Barborini E, Vinati S, Leccardi M, Repetto P, Bertolini G, Rorato O, Lorenzelli L, Decarli M, Guarnieri V, Ducati C, Milani P (2008) Batch fabrication of metal oxide sensors on micro-hotplates. J Micromech Microeng 18:055015CrossRef
32.
Zurück zum Zitat Barborini E, Piseri P, Podestà A, Milani P (2000) Cluster beam microfabrication of patterns of three-dimensional nanostructured objects. Appl Phys Lett 77:1059–1061CrossRef Barborini E, Piseri P, Podestà A, Milani P (2000) Cluster beam microfabrication of patterns of three-dimensional nanostructured objects. Appl Phys Lett 77:1059–1061CrossRef
33.
Zurück zum Zitat Barborini E, Corbelli G, Bertolini G, Repetto P, Leccardi M, Vinati S, Milani P (2010) The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films. New J Phys 12:073001CrossRef Barborini E, Corbelli G, Bertolini G, Repetto P, Leccardi M, Vinati S, Milani P (2010) The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films. New J Phys 12:073001CrossRef
34.
Zurück zum Zitat Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, CambridgeCrossRef Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, CambridgeCrossRef
35.
Zurück zum Zitat Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S (1998) Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sens Actuators B 53:24–43CrossRef Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S (1998) Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sens Actuators B 53:24–43CrossRef
36.
Zurück zum Zitat Decarli M, Lorenzelli L, Guarnieri V, Barborini E, Vinati S, Ducati C, Milani P (2009) Integration of a technique for the deposition of nanostructured films with MEMS-based microfabrication technologies: application to micro gas sensors. Microelectron Eng 86:1247–1249CrossRef Decarli M, Lorenzelli L, Guarnieri V, Barborini E, Vinati S, Ducati C, Milani P (2009) Integration of a technique for the deposition of nanostructured films with MEMS-based microfabrication technologies: application to micro gas sensors. Microelectron Eng 86:1247–1249CrossRef
Metadaten
Titel
Microhotplates and Integration with Metal-Oxide Nanomaterials
verfasst von
Emanuele Barborini
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5395-6_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.