Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Microscale Technologies for Engineering Complex Tissue Structures

verfasst von : Charles W. Peak, Lauren Cross, Ankur Singh, Akhilesh K. Gaharwar

Erschienen in: Microscale Technologies for Cell Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Engineered tissue scaffolds aim to reproduce the body’s architectural and geometrical intricacies, including vital cell–cell interactions. These scaffolds serve as synthetic extracellular matrices that organize the embedded cells into a three-dimensional (3D) architecture and present them with stimuli for their growth and maturation. Tissue engineering techniques have been applied to many types of tissues; however, numerous challenges regarding their development still remain. These challenges include our inability to generate a functional vasculature that can supply the tissue with nutrients and oxygen and the inability to mimic the complex cell–microenvironmental interactions that regulate the formation of a functional tissue. This chapter focuses on the most recent developments in the field of microfabrication technologies to design vascularized tissue constructs. In particular, we discuss emerging bottom-up approaches to design complex macroscale structures, examine their current limitations, and conclude with future directions in designing more complex tissue architecture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
2.
Zurück zum Zitat Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRef Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRef
3.
Zurück zum Zitat Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef
4.
Zurück zum Zitat Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRef
5.
Zurück zum Zitat Singh A, Peppas NA (2014) Hydrogels and scaffolds for immunomodulation. Adv Mater 26:6530–6541CrossRef Singh A, Peppas NA (2014) Hydrogels and scaffolds for immunomodulation. Adv Mater 26:6530–6541CrossRef
6.
Zurück zum Zitat Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRef Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRef
7.
Zurück zum Zitat Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480CrossRef Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480CrossRef
8.
Zurück zum Zitat Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224CrossRef Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224CrossRef
9.
Zurück zum Zitat Kaully T, Kaufman-Francis K, Lesman A, Levenberg S (2009) Vascularization – the conduit to viable engineered tissues. Tissue Eng Part B Rev 15:159–169CrossRef Kaully T, Kaufman-Francis K, Lesman A, Levenberg S (2009) Vascularization – the conduit to viable engineered tissues. Tissue Eng Part B Rev 15:159–169CrossRef
10.
Zurück zum Zitat Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370CrossRef Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370CrossRef
11.
Zurück zum Zitat Phelps EA, Garcia A (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21:704–709CrossRef Phelps EA, Garcia A (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21:704–709CrossRef
12.
Zurück zum Zitat Naito Y, Shinoka T, Duncan D, Hibino N, Solomon D, Cleary M et al (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63:312–323CrossRef Naito Y, Shinoka T, Duncan D, Hibino N, Solomon D, Cleary M et al (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63:312–323CrossRef
13.
Zurück zum Zitat Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27CrossRef Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27CrossRef
14.
Zurück zum Zitat Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092CrossRef Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092CrossRef
15.
Zurück zum Zitat Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804CrossRef Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804CrossRef
16.
Zurück zum Zitat Patel RG, Purwada A, Cerchietti L, Inghirami G, Melnick A, Gaharwar AK et al (2014) Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng 7(3):394–408CrossRef Patel RG, Purwada A, Cerchietti L, Inghirami G, Melnick A, Gaharwar AK et al (2014) Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng 7(3):394–408CrossRef
17.
Zurück zum Zitat Lanza RP, Vacanti J (2007) Principles of tissue engineering. Academic Press, New York Lanza RP, Vacanti J (2007) Principles of tissue engineering. Academic Press, New York
18.
Zurück zum Zitat Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R et al (2005) Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant 14:67–76CrossRef Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R et al (2005) Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant 14:67–76CrossRef
19.
Zurück zum Zitat Larrea X, Buechler P, Büchler P, Buchler P (2009) A transient diffusion model of the cornea for the assessment of oxygen diffusivity and consumption. Invest Ophthalmol Vis Sci 50:1076–1080CrossRef Larrea X, Buechler P, Büchler P, Buchler P (2009) A transient diffusion model of the cornea for the assessment of oxygen diffusivity and consumption. Invest Ophthalmol Vis Sci 50:1076–1080CrossRef
20.
Zurück zum Zitat Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL (2015) Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 52:376–384CrossRef Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL (2015) Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 52:376–384CrossRef
21.
Zurück zum Zitat Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91CrossRef Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91CrossRef
22.
23.
Zurück zum Zitat Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931 Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931
24.
Zurück zum Zitat Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693CrossRef Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693CrossRef
25.
Zurück zum Zitat Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43CrossRef Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43CrossRef
26.
Zurück zum Zitat Flamme I, Frölich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210CrossRef Flamme I, Frölich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210CrossRef
27.
Zurück zum Zitat Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15CrossRef Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15CrossRef
28.
Zurück zum Zitat Singer AJ, Clark R (1999) Cutaneous wound healing. N Engl J Med 341:738–746CrossRef Singer AJ, Clark R (1999) Cutaneous wound healing. N Engl J Med 341:738–746CrossRef
29.
Zurück zum Zitat Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176:1375CrossRef Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176:1375CrossRef
30.
Zurück zum Zitat Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES et al (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659CrossRef Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES et al (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659CrossRef
31.
Zurück zum Zitat Sato Y, Endo H, Okuyama H, Takeda T, Iwahashi H, Imagawa A et al (2011) Cellular hypoxia of pancreatic β-cells due to high levels of oxygen consumption for insulin secretion in vitro. J Biol Chem 286:12524–12532CrossRef Sato Y, Endo H, Okuyama H, Takeda T, Iwahashi H, Imagawa A et al (2011) Cellular hypoxia of pancreatic β-cells due to high levels of oxygen consumption for insulin secretion in vitro. J Biol Chem 286:12524–12532CrossRef
32.
Zurück zum Zitat Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319CrossRef Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319CrossRef
33.
Zurück zum Zitat Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009CrossRef Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009CrossRef
34.
Zurück zum Zitat West JL, Moon JJ (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–310CrossRef West JL, Moon JJ (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–310CrossRef
35.
Zurück zum Zitat Khan OF, Sefton MV (2011) Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol 29(8):379–387 Khan OF, Sefton MV (2011) Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol 29(8):379–387
36.
Zurück zum Zitat Rouwkema J, Rivron N, van Blitterswijk C (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441CrossRef Rouwkema J, Rivron N, van Blitterswijk C (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441CrossRef
37.
Zurück zum Zitat Sukmana I, Vermette P (2010) Polymer fibers as contact guidance to orient microvascularization in a 3D environment. J Biomed Mater Res A 92A:1587–1597 Sukmana I, Vermette P (2010) Polymer fibers as contact guidance to orient microvascularization in a 3D environment. J Biomed Mater Res A 92A:1587–1597
38.
Zurück zum Zitat Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A (2015) Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 7:015001CrossRef Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A (2015) Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 7:015001CrossRef
39.
Zurück zum Zitat Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 9:5963–5973CrossRef Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 9:5963–5973CrossRef
40.
Zurück zum Zitat Patel ZS, Mikos AG (2004) Angiogenesis with biomaterial-based drug-and cell-delivery systems. J Biomater Sci Polym Ed 15:701–726CrossRef Patel ZS, Mikos AG (2004) Angiogenesis with biomaterial-based drug-and cell-delivery systems. J Biomater Sci Polym Ed 15:701–726CrossRef
41.
Zurück zum Zitat Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRef Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRef
42.
Zurück zum Zitat Silva EA, Mooney DJ (2010) Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241CrossRef Silva EA, Mooney DJ (2010) Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241CrossRef
43.
Zurück zum Zitat Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M et al (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233CrossRef Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M et al (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233CrossRef
44.
Zurück zum Zitat Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189CrossRef Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189CrossRef
45.
Zurück zum Zitat Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRef Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRef
46.
Zurück zum Zitat Salcedo R, Wasserman K, Young HA, Grimm MC, Howard O, Anver MR et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1 {alpha}. Am J Pathol 154:1125CrossRef Salcedo R, Wasserman K, Young HA, Grimm MC, Howard O, Anver MR et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1 {alpha}. Am J Pathol 154:1125CrossRef
47.
Zurück zum Zitat Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175CrossRef Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175CrossRef
48.
Zurück zum Zitat Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178CrossRef Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178CrossRef
49.
Zurück zum Zitat Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26 Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26
50.
Zurück zum Zitat Roberts AB (2000) Molecular and cell biology of TGF. Miner Electrolyte Metab 24:111–119CrossRef Roberts AB (2000) Molecular and cell biology of TGF. Miner Electrolyte Metab 24:111–119CrossRef
51.
Zurück zum Zitat Bergsten E, Uutela M, Li X, Pietras K, Östman A, Heldin CH et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF -receptor. Nat Cell Biol 3:512–516CrossRef Bergsten E, Uutela M, Li X, Pietras K, Östman A, Heldin CH et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF -receptor. Nat Cell Biol 3:512–516CrossRef
52.
Zurück zum Zitat LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA et al (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3:517–521CrossRef LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA et al (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3:517–521CrossRef
53.
Zurück zum Zitat Stiles CD (1983) The molecular biology of platelet-derived growth factor. Cell 33:653CrossRef Stiles CD (1983) The molecular biology of platelet-derived growth factor. Cell 33:653CrossRef
54.
Zurück zum Zitat Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532CrossRef Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532CrossRef
55.
Zurück zum Zitat Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202CrossRef Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202CrossRef
56.
Zurück zum Zitat Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotech 23:879–884CrossRef Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotech 23:879–884CrossRef
57.
Zurück zum Zitat Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107:3323–3328CrossRef Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107:3323–3328CrossRef
58.
Zurück zum Zitat Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540CrossRef Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540CrossRef
59.
Zurück zum Zitat Wang GJ, Hsueh CC, Hsu S, Hung HS (2007) Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. J Micromech Microeng 17:2000CrossRef Wang GJ, Hsueh CC, Hsu S, Hung HS (2007) Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. J Micromech Microeng 17:2000CrossRef
60.
Zurück zum Zitat Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL (2011) Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed 22(4–6):443–456CrossRef Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL (2011) Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed 22(4–6):443–456CrossRef
61.
Zurück zum Zitat Armani DK, Liu C (2000) Microfabrication technology for polycaprolactone, a biodegradable polymer. J Micromech Microeng 10:80CrossRef Armani DK, Liu C (2000) Microfabrication technology for polycaprolactone, a biodegradable polymer. J Micromech Microeng 10:80CrossRef
62.
Zurück zum Zitat Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT (2006) Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27:2558–2565CrossRef Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT (2006) Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27:2558–2565CrossRef
63.
Zurück zum Zitat Guillemette MD, Park H, Hsiao JC, Jain SR, Larson BL, Langer R et al (2010) Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol Biosci 10(11):1330–1337CrossRef Guillemette MD, Park H, Hsiao JC, Jain SR, Larson BL, Langer R et al (2010) Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol Biosci 10(11):1330–1337CrossRef
64.
Zurück zum Zitat Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang Y, Borenstein JT et al (2006) Three dimensional microfluidic tissue engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169CrossRef Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang Y, Borenstein JT et al (2006) Three dimensional microfluidic tissue engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169CrossRef
65.
Zurück zum Zitat Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ et al (2008) A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29:418–426CrossRef Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ et al (2008) A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29:418–426CrossRef
66.
Zurück zum Zitat Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia GI, Mukundan S et al (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules 14(5):1299–1310 Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia GI, Mukundan S et al (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules 14(5):1299–1310
67.
Zurück zum Zitat Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K et al (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009CrossRef Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K et al (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009CrossRef
68.
Zurück zum Zitat Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRef Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRef
69.
Zurück zum Zitat Oh J, Kim K, Won S, Cha C, Gaharwar A, Selimovic S et al (2013) Microfluidic fabrication of cell adhesive chitosan microtubes. Biomed Microdevices 15(3):465–472 Oh J, Kim K, Won S, Cha C, Gaharwar A, Selimovic S et al (2013) Microfluidic fabrication of cell adhesive chitosan microtubes. Biomed Microdevices 15(3):465–472
70.
Zurück zum Zitat Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2(6):895–907 Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2(6):895–907
71.
Zurück zum Zitat Chiu Y-C, Larson JC, Perez-Luna VH, Brey EM (2009) Formation of microchannels in poly(ethylene glycol) hydrogels by selective degradation of patterned microstructures. Chem Mater 21:1677–1682CrossRef Chiu Y-C, Larson JC, Perez-Luna VH, Brey EM (2009) Formation of microchannels in poly(ethylene glycol) hydrogels by selective degradation of patterned microstructures. Chem Mater 21:1677–1682CrossRef
72.
Zurück zum Zitat Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1CrossRef Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1CrossRef
73.
Zurück zum Zitat Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731CrossRef Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731CrossRef
74.
Zurück zum Zitat Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309CrossRef Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309CrossRef
75.
Zurück zum Zitat Zheng Y, Henderson PW, Choi NW, Bonassar LJ, Spector JA, Stroock AD (2011) Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32:5391–5401CrossRef Zheng Y, Henderson PW, Choi NW, Bonassar LJ, Spector JA, Stroock AD (2011) Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32:5391–5401CrossRef
76.
Zurück zum Zitat Diez M, Schulte VA, Stefanoni F, Natale CF, Mollica F, Cesa CM et al (2011) Molding micropatterns of elasticity on PEG based hydrogels to control cell adhesion and migration. Adv Eng Mater 13(10):B395–B404 Diez M, Schulte VA, Stefanoni F, Natale CF, Mollica F, Cesa CM et al (2011) Molding micropatterns of elasticity on PEG based hydrogels to control cell adhesion and migration. Adv Eng Mater 13(10):B395–B404
77.
Zurück zum Zitat Bianchi F, Rosi M, Vozzi G, Emanueli C, Madeddu P, Ahluwalia A (2007) Microfabrication of fractal polymeric structures for capillary morphogenesis: applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J Biomed Mater Res B Appl Biomater 81B:462–468CrossRef Bianchi F, Rosi M, Vozzi G, Emanueli C, Madeddu P, Ahluwalia A (2007) Microfabrication of fractal polymeric structures for capillary morphogenesis: applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J Biomed Mater Res B Appl Biomater 81B:462–468CrossRef
78.
Zurück zum Zitat Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098CrossRef Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098CrossRef
79.
Zurück zum Zitat Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204CrossRef Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204CrossRef
80.
Zurück zum Zitat Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39CrossRef Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39CrossRef
81.
Zurück zum Zitat Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271CrossRef Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271CrossRef
82.
Zurück zum Zitat Therriault D, Shepherd RF, White SR, Lewis JA (2005) Fugitive inks for direct write assembly of three dimensional microvascular networks. Adv Mater 17:395–399CrossRef Therriault D, Shepherd RF, White SR, Lewis JA (2005) Fugitive inks for direct write assembly of three dimensional microvascular networks. Adv Mater 17:395–399CrossRef
83.
Zurück zum Zitat Wu W, DeConinck A, Lewis JA (2010) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183 Wu W, DeConinck A, Lewis JA (2010) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183
84.
Zurück zum Zitat Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118CrossRef Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118CrossRef
85.
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
86.
Zurück zum Zitat Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915CrossRef Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915CrossRef
87.
Zurück zum Zitat Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175CrossRef Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175CrossRef
88.
Zurück zum Zitat King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007–2012CrossRef King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007–2012CrossRef
89.
Zurück zum Zitat Borenstein JT, Megley K, Wall K, Pritchard EM, Truong D, Kaplan DL et al (2010) Tissue equivalents based on cell-seeded biodegradable microfluidic constructs. Materials 3:1833–1844CrossRef Borenstein JT, Megley K, Wall K, Pritchard EM, Truong D, Kaplan DL et al (2010) Tissue equivalents based on cell-seeded biodegradable microfluidic constructs. Materials 3:1833–1844CrossRef
90.
Zurück zum Zitat Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotech 20:602–606CrossRef Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotech 20:602–606CrossRef
91.
Zurück zum Zitat Wang J, Bettinger CJ, Langer RS, Borenstein JT (2010) Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly (ester amide) elastomers. Organogenesis 6:212CrossRef Wang J, Bettinger CJ, Langer RS, Borenstein JT (2010) Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly (ester amide) elastomers. Organogenesis 6:212CrossRef
92.
Zurück zum Zitat Borenstein J, Tupper M, Mack P, Weinberg E, Khalil A, Hsiao J et al (2010) Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12:71–79CrossRef Borenstein J, Tupper M, Mack P, Weinberg E, Khalil A, Hsiao J et al (2010) Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12:71–79CrossRef
93.
Zurück zum Zitat Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725CrossRef Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725CrossRef
94.
Zurück zum Zitat Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774CrossRef Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774CrossRef
95.
Zurück zum Zitat Bellan LM, Pearsall M, Cropek DM, Langer R (2012) A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv Mater 24:5187–5191CrossRef Bellan LM, Pearsall M, Cropek DM, Langer R (2012) A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv Mater 24:5187–5191CrossRef
96.
Zurück zum Zitat Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3 Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3
97.
Zurück zum Zitat Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM et al (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951CrossRef Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM et al (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951CrossRef
98.
Zurück zum Zitat Fernandez JG, Khademhosseini A (2010) Micro-masonry: construction of 3D structures by microscale self-assembly. Adv Mater 22:2538–2541CrossRef Fernandez JG, Khademhosseini A (2010) Micro-masonry: construction of 3D structures by microscale self-assembly. Adv Mater 22:2538–2541CrossRef
99.
Zurück zum Zitat Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105:9522–9527CrossRef Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105:9522–9527CrossRef
100.
Zurück zum Zitat Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng 108(7):1693–1703 Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng 108(7):1693–1703
101.
Zurück zum Zitat Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14:413–421CrossRef Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14:413–421CrossRef
102.
Zurück zum Zitat Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001CrossRef Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001CrossRef
103.
Zurück zum Zitat McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci 103:11461CrossRef McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci 103:11461CrossRef
104.
Zurück zum Zitat Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062CrossRef Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062CrossRef
105.
Zurück zum Zitat Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A et al (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842CrossRef Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A et al (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842CrossRef
106.
Zurück zum Zitat Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef
107.
Zurück zum Zitat Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577CrossRef Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577CrossRef
108.
Zurück zum Zitat Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S et al (2010) Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Funct Mater 20:429–436CrossRef Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S et al (2010) Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Funct Mater 20:429–436CrossRef
109.
Zurück zum Zitat Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu C-J, Akkus O et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12:779–793CrossRef Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu C-J, Akkus O et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12:779–793CrossRef
110.
Zurück zum Zitat Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148CrossRef Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148CrossRef
111.
Zurück zum Zitat Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264CrossRef Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264CrossRef
112.
Zurück zum Zitat Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001CrossRef Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001CrossRef
Metadaten
Titel
Microscale Technologies for Engineering Complex Tissue Structures
verfasst von
Charles W. Peak
Lauren Cross
Ankur Singh
Akhilesh K. Gaharwar
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20726-1_1

Neuer Inhalt