Skip to main content

2018 | OriginalPaper | Buchkapitel

55. Microsensors for Determination of Thermal Conductivity of Biomaterials and Solutions

verfasst von : Xin M. Liang, Praveen K. Sekar, Dayong Gao

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Obtaining accurate thermal properties of biomaterials plays an important role in modern bioscience and medicine. This chapter discusses different thermal conductivity measurement techniques and describes a featured development of a BioMEMS-based thermal probe to accurately and readily determine the thermal conductivities for soft biological tissues and aqueous solutions. By employing a closely packed microfabricated serpentine gold wire to function as the heater and thermistor, the featured thermal sensor utilizes transient hot wire (THW) principle to measure thermal conductivities of various fluids and soft biomaterials. To ensure system accuracy and data reliability, the microscopic thermal conductivity measuring device has been comprehensively characterized with distilled water as thermal standard material at temperatures ranging from 0 °C to 40 °C. Despite the previous belief, the system calibration constant was observed to be favorably stable with respect to different sensors, but highly dependent to ambient temperatures. Distinctive thermal conductivity dynamic response during cooling (40 °C to −40 °C) was observed using the miniaturized single-tip sensor for various concentrated cryoprotective agents (CPAs), i.e., glycerol, ethylene glycol, and dimethyl sulfoxide. Experimental data suggests thermal conductivity of aqueous solutions can be significantly altered at different temperatures. Chicken breast, chicken skin, porcine limb, and bovine liver were also successfully assayed to study the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Unique differences in localized thermal conductivity were also observed, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex bio-tissues. Overall, the presented microthermal sensor with automated data analysis algorithm has shown superior performance characteristics and proven to be a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials with various shapes and sizes. It is of great value to cryopreservation of tissues, hyperthermia, or cryogenic and other thermal-based clinical diagnostics and treatments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Babu SK, Praveen KS, Raja B, Damodharan P (2013) Measurement of thermal conductivity of fluid using single and dual wire transient techniques. Measurement 46:2746–2752CrossRef Babu SK, Praveen KS, Raja B, Damodharan P (2013) Measurement of thermal conductivity of fluid using single and dual wire transient techniques. Measurement 46:2746–2752CrossRef
Zurück zum Zitat Bai XM, Pegg DE (1991) Thermal-property measurements on biological-materials at subzero temperatures. J Biomech Eng Trans ASME 113:423–429CrossRef Bai XM, Pegg DE (1991) Thermal-property measurements on biological-materials at subzero temperatures. J Biomech Eng Trans ASME 113:423–429CrossRef
Zurück zum Zitat Balasubramaniam TA, Bowman HF (1974) Temperature field due to a time dependent heat source of spherical geometry in an infinite medium. J Heat Transf 96:296–299CrossRef Balasubramaniam TA, Bowman HF (1974) Temperature field due to a time dependent heat source of spherical geometry in an infinite medium. J Heat Transf 96:296–299CrossRef
Zurück zum Zitat Balasubramaniam TA, Bowman HF (1977) Thermal conductivity and thermal diffusivity of biomaterials: a simultaneous measurement technique. J Biomech Eng 99:148–154CrossRef Balasubramaniam TA, Bowman HF (1977) Thermal conductivity and thermal diffusivity of biomaterials: a simultaneous measurement technique. J Biomech Eng 99:148–154CrossRef
Zurück zum Zitat Bhattacharya A, Mahajan RL (2003) Temperature dependence of thermal conductivity of biological tissues. Physiol Meas 24:769–783CrossRef Bhattacharya A, Mahajan RL (2003) Temperature dependence of thermal conductivity of biological tissues. Physiol Meas 24:769–783CrossRef
Zurück zum Zitat Bhavaraju NC, Cao H, Yuan DY, Valvano JW, Webster JG (2001) Measurement of directional thermal properties of biomaterials. IEEE Trans Biomed Eng 48:261–267CrossRef Bhavaraju NC, Cao H, Yuan DY, Valvano JW, Webster JG (2001) Measurement of directional thermal properties of biomaterials. IEEE Trans Biomed Eng 48:261–267CrossRef
Zurück zum Zitat Bowman HF, Cravalho EG, Woods M (1975) Theory, measurement, and application of thermal properties of biomaterials. Annu Rev. Biophys Bioeng 4:43–80CrossRef Bowman HF, Cravalho EG, Woods M (1975) Theory, measurement, and application of thermal properties of biomaterials. Annu Rev. Biophys Bioeng 4:43–80CrossRef
Zurück zum Zitat Carslaw HS (1921) The mathematical theory of the conduction of heat in solids. Macmillan, London Carslaw HS (1921) The mathematical theory of the conduction of heat in solids. Macmillan, London
Zurück zum Zitat Challoner AR, Powell RW (1956) Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. Proc R Soc A 238:90–106CrossRef Challoner AR, Powell RW (1956) Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. Proc R Soc A 238:90–106CrossRef
Zurück zum Zitat Chen MM, Holmes KR, Rupinskas V (1981) Pulse-decay method for measuring the thermal-conductivity of living tissues. J Biomech Eng Trans ASME 103:253–260 Chen MM, Holmes KR, Rupinskas V (1981) Pulse-decay method for measuring the thermal-conductivity of living tissues. J Biomech Eng Trans ASME 103:253–260
Zurück zum Zitat Cheng HL, Plewes DB (2002) Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J Magn Reson Imaging 16:598–609CrossRef Cheng HL, Plewes DB (2002) Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J Magn Reson Imaging 16:598–609CrossRef
Zurück zum Zitat Cheng SX, Jiang YF, Liang XG (1994) A tiny heat probe for measuring the thermal-conductivities of nonrigid materials. Measur Sci Technol 5:1339–1344CrossRef Cheng SX, Jiang YF, Liang XG (1994) A tiny heat probe for measuring the thermal-conductivities of nonrigid materials. Measur Sci Technol 5:1339–1344CrossRef
Zurück zum Zitat Chiu J, Fair PG (1979) Determination of thermal conductivity by differential scanning calorimetry. Thermochim Acta 34:267–273CrossRef Chiu J, Fair PG (1979) Determination of thermal conductivity by differential scanning calorimetry. Thermochim Acta 34:267–273CrossRef
Zurück zum Zitat Choi JH, Bischof JC (2010) Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology 60:52–70CrossRef Choi JH, Bischof JC (2010) Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology 60:52–70CrossRef
Zurück zum Zitat Choi JH, Bischof JC (2008) A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures. Cryobiology 57:79–83CrossRef Choi JH, Bischof JC (2008) A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures. Cryobiology 57:79–83CrossRef
Zurück zum Zitat Clark WT, Powell RW (1962) Measurement of thermal conduction by the thermal comparator. J Sci Instrum 39:545CrossRef Clark WT, Powell RW (1962) Measurement of thermal conduction by the thermal comparator. J Sci Instrum 39:545CrossRef
Zurück zum Zitat Cohen ML (1977) Measurement of the thermal properties of human skin. A review. J Invest Dermatol 69:333–338CrossRef Cohen ML (1977) Measurement of the thermal properties of human skin. A review. J Invest Dermatol 69:333–338CrossRef
Zurück zum Zitat Cooper TE, Trezek GJ (1972) A probe technique for determining the thermal conductivity of tissue. J Heat Transf 94:133–140CrossRef Cooper TE, Trezek GJ (1972) A probe technique for determining the thermal conductivity of tissue. J Heat Transf 94:133–140CrossRef
Zurück zum Zitat Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16:413–422CrossRef Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16:413–422CrossRef
Zurück zum Zitat Davis JR (1998) Metals handbook. ASM International, Materials Park Davis JR (1998) Metals handbook. ASM International, Materials Park
Zurück zum Zitat Grayson J (1952) Internal calorimetry in determination of thermal conductivity and blood flow. Physiology 118:54–72CrossRef Grayson J (1952) Internal calorimetry in determination of thermal conductivity and blood flow. Physiology 118:54–72CrossRef
Zurück zum Zitat Healy JJ, Degroot JJ, Kestin J (1976) Theory of transient hot-wire method for measuring thermal-conductivity. Physica B & C 82:392–408CrossRef Healy JJ, Degroot JJ, Kestin J (1976) Theory of transient hot-wire method for measuring thermal-conductivity. Physica B & C 82:392–408CrossRef
Zurück zum Zitat Hill JE, Leitman JD, Sunderland JE (1967) Thermal conductivity of various meats. Food Technol 21:1143–1148 Hill JE, Leitman JD, Sunderland JE (1967) Thermal conductivity of various meats. Food Technol 21:1143–1148
Zurück zum Zitat Kujawska T, Secomski W, Kruglenko E, Krawczyk K, Nowicki A (2014) Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound. Plos One:9 Kujawska T, Secomski W, Kruglenko E, Krawczyk K, Nowicki A (2014) Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound. Plos One:9
Zurück zum Zitat Kuntner J, Kohl F, Jakoby B (2006) Simultaneous thermal conductivity and diffusivity sensing in liquids using a micromachined device. Sensors Actuators A Phys 130:62–67CrossRef Kuntner J, Kohl F, Jakoby B (2006) Simultaneous thermal conductivity and diffusivity sensing in liquids using a micromachined device. Sensors Actuators A Phys 130:62–67CrossRef
Zurück zum Zitat Li L, Liang M, Yu B, Yang S (2014) Analysis of thermal conductivity in living biological tissue with vascular network and convection. Int J Therm Sci 86:219–226CrossRef Li L, Liang M, Yu B, Yang S (2014) Analysis of thermal conductivity in living biological tissue with vascular network and convection. Int J Therm Sci 86:219–226CrossRef
Zurück zum Zitat Liang XG, Ge XS, Zhang YP, Wang GJ (1991) A convenient method of measuring the thermal-conductivity of biological tissue. Phys Med Biol 36:1599–1605CrossRef Liang XG, Ge XS, Zhang YP, Wang GJ (1991) A convenient method of measuring the thermal-conductivity of biological tissue. Phys Med Biol 36:1599–1605CrossRef
Zurück zum Zitat Liang XM, Ding WP, Chen HH, Shu ZQ, Zhao G, Zhang HF, Gao DY (2011) Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Biomed Microdevices 13:923–928CrossRef Liang XM, Ding WP, Chen HH, Shu ZQ, Zhao G, Zhang HF, Gao DY (2011) Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Biomed Microdevices 13:923–928CrossRef
Zurück zum Zitat Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN (2006) Characterization of the RF ablation-induced ‘oven effect’: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperth 22:327–342CrossRef Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN (2006) Characterization of the RF ablation-induced ‘oven effect’: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperth 22:327–342CrossRef
Zurück zum Zitat Mallamace F, Corsaro C, Stanley HE (2013) Possible relation of water structural relaxation to water anomalies. Proc Nat Acad Sci USA 110:4899–4904CrossRef Mallamace F, Corsaro C, Stanley HE (2013) Possible relation of water structural relaxation to water anomalies. Proc Nat Acad Sci USA 110:4899–4904CrossRef
Zurück zum Zitat Manohar K, Yarbrough DW, Booth JR (2000) Measurement of apparent thermal conductivity by the thermal probe method. J Test Eval 28:345–351CrossRef Manohar K, Yarbrough DW, Booth JR (2000) Measurement of apparent thermal conductivity by the thermal probe method. J Test Eval 28:345–351CrossRef
Zurück zum Zitat Nagasaka Y, Nagashima A (1981) Absolute measurement of the thermal-conductivity of electrically conducting liquids by the transient hot-wire method. J Phys E-Sci Instrum 14:1435–1440CrossRef Nagasaka Y, Nagashima A (1981) Absolute measurement of the thermal-conductivity of electrically conducting liquids by the transient hot-wire method. J Phys E-Sci Instrum 14:1435–1440CrossRef
Zurück zum Zitat Paul G, Chopkar M, Manna I, Das P (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sust Energ Rev 14:1913–1924CrossRef Paul G, Chopkar M, Manna I, Das P (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sust Energ Rev 14:1913–1924CrossRef
Zurück zum Zitat Penas JRV, De Zarate JMO, Khayet M (2008) Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method. J Appl Phys:104 Penas JRV, De Zarate JMO, Khayet M (2008) Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method. J Appl Phys:104
Zurück zum Zitat Poppendiek HF, Randall R, Breeden JA, Chambers JE, Murphy JR (1967) Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3:318–327CrossRef Poppendiek HF, Randall R, Breeden JA, Chambers JE, Murphy JR (1967) Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology 3:318–327CrossRef
Zurück zum Zitat Powell R (1957) Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J Sci Instrum 34:485CrossRef Powell R (1957) Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J Sci Instrum 34:485CrossRef
Zurück zum Zitat Rausch MH, Krzeminski K, Leipertz A, Froba AP (2013) A new guarded parallel-plate instrument for the measurement of the thermal conductivity of fluids and solids. Int J Heat Mass Transf 58:610–618CrossRef Rausch MH, Krzeminski K, Leipertz A, Froba AP (2013) A new guarded parallel-plate instrument for the measurement of the thermal conductivity of fluids and solids. Int J Heat Mass Transf 58:610–618CrossRef
Zurück zum Zitat Roemer RB (1999) Engineering aspects of hyperthermia therapy. Annu Rev. Biomed Eng 1:347–376CrossRef Roemer RB (1999) Engineering aspects of hyperthermia therapy. Annu Rev. Biomed Eng 1:347–376CrossRef
Zurück zum Zitat Rohanizadeh R, Kokabi N (2009) Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties. J Mater Sci Mater Med 20:2413–2418CrossRef Rohanizadeh R, Kokabi N (2009) Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties. J Mater Sci Mater Med 20:2413–2418CrossRef
Zurück zum Zitat Roussel P, Lysenko V, Remaki B, Delhomme G, Dittmar A, Barbier D (1999) Thick oxidised porous silicon layers for the design of a biomedical thermal conductivity microsensor. Sensors Actuators A Phys 74:100–103CrossRef Roussel P, Lysenko V, Remaki B, Delhomme G, Dittmar A, Barbier D (1999) Thick oxidised porous silicon layers for the design of a biomedical thermal conductivity microsensor. Sensors Actuators A Phys 74:100–103CrossRef
Zurück zum Zitat Vendrik AJ, Vos JJ (1957) A method for the measurement of the thermal conductivity of human skin. J Appl Physiol 11:211–215CrossRef Vendrik AJ, Vos JJ (1957) A method for the measurement of the thermal conductivity of human skin. J Appl Physiol 11:211–215CrossRef
Zurück zum Zitat Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle - fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle - fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef
Zurück zum Zitat Xie HQ, Cheng SX (2001) A fine needle probe for determining the thermal conductivity of penetrable materials. Measur Sci Technol 12:58–62CrossRef Xie HQ, Cheng SX (2001) A fine needle probe for determining the thermal conductivity of penetrable materials. Measur Sci Technol 12:58–62CrossRef
Zurück zum Zitat Xie HQ, Gu H, Fujii M, Zhang X (2006) Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measur Sci Technol 17:208–214CrossRef Xie HQ, Gu H, Fujii M, Zhang X (2006) Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measur Sci Technol 17:208–214CrossRef
Zurück zum Zitat Yi M, Panchawagh HV, Podhajsky RJ, Mahajan RL (2009) Micromachined hot-wire thermal conductivity probe for biomedical applications. IEEE Trans Biomed Eng 56:2477–2484CrossRef Yi M, Panchawagh HV, Podhajsky RJ, Mahajan RL (2009) Micromachined hot-wire thermal conductivity probe for biomedical applications. IEEE Trans Biomed Eng 56:2477–2484CrossRef
Zurück zum Zitat Zhang HF, He LQ, Cheng SX, Zhai ZT, Gao DY (2003) A dual-thermistor probe for absolute measurement of thermal diffusivity and thermal conductivity by the heat pulse method. Measur Sci Technol 14:1396–1401CrossRef Zhang HF, He LQ, Cheng SX, Zhai ZT, Gao DY (2003) A dual-thermistor probe for absolute measurement of thermal diffusivity and thermal conductivity by the heat pulse method. Measur Sci Technol 14:1396–1401CrossRef
Zurück zum Zitat Zhang HF, Zhao G, Ye H, Ge XS, Cheng SX (2005) An improved hot probe for measuring thermal conductivity of liquids. Measur Sci Technol 16:1430–1435CrossRef Zhang HF, Zhao G, Ye H, Ge XS, Cheng SX (2005) An improved hot probe for measuring thermal conductivity of liquids. Measur Sci Technol 16:1430–1435CrossRef
Zurück zum Zitat Zhu S, Marcotte M, Ramaswamy H, Shao Y, Le-Bail A (2008) Evaluation and comparison of thermal conductivity of food materials at high pressure. Food Bioprod Process 86:147–153CrossRef Zhu S, Marcotte M, Ramaswamy H, Shao Y, Le-Bail A (2008) Evaluation and comparison of thermal conductivity of food materials at high pressure. Food Bioprod Process 86:147–153CrossRef
Zurück zum Zitat Ziegler GR, Rizvi SSH (2006) Thermal conductivity of liquid foods by the thermal comparator method. J Food Sci 50:1458–1462CrossRef Ziegler GR, Rizvi SSH (2006) Thermal conductivity of liquid foods by the thermal comparator method. J Food Sci 50:1458–1462CrossRef
Metadaten
Titel
Microsensors for Determination of Thermal Conductivity of Biomaterials and Solutions
verfasst von
Xin M. Liang
Praveen K. Sekar
Dayong Gao
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_74

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.