Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2021

23.04.2021 | Original Research Article

Microstructural and Rotating-Bending Fatigue Behavior Relationship in Nanostructured Carbo-Austempered Cast Steels

verfasst von: Oscar Ríos-Diez, Ricardo Aristizábal-Sierra, Claudia Serna-Giraldo, Adriana Eres-Castellanos, Carlos García-Mateo

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbo-austempering processes have been established as a viable alternative to conventional carburized—quenched and tempered (Q&T) steels for components subjected to wear and contact fatigue conditions. However, little information is available about the rotating-bending fatigue performance of carbo-austempered nanobainitic steels. In this article, the rotating-bending fatigue behavior of a high silicon cast steel subjected to different carbo-austempering processes has been evaluated. The implemented heat treatments were designed to lead to nanobainitic microstructures in the case and to obtain different microstructures in the core, including multiphasic microstructures achieved by intercritical austenitization. The results were compared with the ones given by a conventional carburized-Q&T specimen. The microstructural features involved in crack propagation during the cyclic fatigue were evaluated by means of electron backscatter diffraction (EBSD), by scanning the premortem and postmortem samples. Results show that nanobainitic carbo-austempered cast steels exhibit better fatigue performance than traditional carburized-Q&T steels, which is explained in terms of the differences between both microstructures, the role of both ferrite and austenite crystals in crack propagation, the importance of prior austenite boundaries and block boundaries as crack deflectors, and how all these parameters finally have an effect on the fatigue behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
 
2
MATLAB is a trademark of MathWorks, Inc.
 
Literatur
2.
Zurück zum Zitat K. Hayrynen, K. Brandenberg, and J. Keough: Soc. Auto. Eng., 2002, pp. 1–8. K. Hayrynen, K. Brandenberg, and J. Keough: Soc. Auto. Eng., 2002, pp. 1–8.
3.
Zurück zum Zitat M. Steinbacher and H. Zoch: HTM–J. Heat Treat. Mater., 2017, vol. 72, pp. 243–53.CrossRef M. Steinbacher and H. Zoch: HTM–J. Heat Treat. Mater., 2017, vol. 72, pp. 243–53.CrossRef
4.
Zurück zum Zitat J. Damon, F. Mühl, S. Dietrich, and V. Schulze: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 104–17.CrossRef J. Damon, F. Mühl, S. Dietrich, and V. Schulze: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 104–17.CrossRef
5.
Zurück zum Zitat A. Clark: Thesis in Engineering Materials, University of Windsor, Windsor, 2013, pp. 1–103. A. Clark: Thesis in Engineering Materials, University of Windsor, Windsor, 2013, pp. 1–103.
6.
Zurück zum Zitat Y. Wang, F. Zhang, Z. Yang, B. Lv, and C. Zheng: Materials Basel, 2016, vol. 9 (12), pp. 1–18.CrossRef Y. Wang, F. Zhang, Z. Yang, B. Lv, and C. Zheng: Materials Basel, 2016, vol. 9 (12), pp. 1–18.CrossRef
7.
Zurück zum Zitat Y. Wang, Z. Yang, F. Zhang, and D. Wu: Mater Sci. Eng. A, 2016, vol. 670, pp. 166–77.CrossRef Y. Wang, Z. Yang, F. Zhang, and D. Wu: Mater Sci. Eng. A, 2016, vol. 670, pp. 166–77.CrossRef
8.
Zurück zum Zitat Z. Yang, F. Zhang, Y. Ji, Y. Wang, B. Lv, and M. Wang: Mater. Sci. Eng. A, 2016, vol. 673, pp. 524–39.CrossRef Z. Yang, F. Zhang, Y. Ji, Y. Wang, B. Lv, and M. Wang: Mater. Sci. Eng. A, 2016, vol. 673, pp. 524–39.CrossRef
9.
10.
Zurück zum Zitat F. Zhang, T. Wang, P. Zhang, B. Lv, M. Zhang, and Z. Zheng: Scripta Mater., 2008, vol. 59 (3), pp. 294–96.CrossRef F. Zhang, T. Wang, P. Zhang, B. Lv, M. Zhang, and Z. Zheng: Scripta Mater., 2008, vol. 59 (3), pp. 294–96.CrossRef
11.
Zurück zum Zitat P. Zhang, F. Zhang, Z. Yan, T. Wang, and L. Qian: Wear, 2011, vol. 271, pp. 697–704.CrossRef P. Zhang, F. Zhang, Z. Yan, T. Wang, and L. Qian: Wear, 2011, vol. 271, pp. 697–704.CrossRef
12.
Zurück zum Zitat R. Rementeria, L. Morales-Rivas, M. Kunz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F. Caballero: Mater. Sci. Eng. A, 2015, vol. 630, pp. 71–77.CrossRef R. Rementeria, L. Morales-Rivas, M. Kunz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F. Caballero: Mater. Sci. Eng. A, 2015, vol. 630, pp. 71–77.CrossRef
13.
Zurück zum Zitat M. Peet, P. Hill, M. Rawson, S. Wood, and H. Bhadeshia: Mater. Sci. Technol., 2011, vol. 27 (1), pp. 119–23.CrossRef M. Peet, P. Hill, M. Rawson, S. Wood, and H. Bhadeshia: Mater. Sci. Technol., 2011, vol. 27 (1), pp. 119–23.CrossRef
14.
Zurück zum Zitat I. Mueller, R. Rementeria, F. Caballero, M. Kuntz, T. Sourmail, and E. Kerscher: Materials, 2016, vol. 9, pp. 1–19.CrossRef I. Mueller, R. Rementeria, F. Caballero, M. Kuntz, T. Sourmail, and E. Kerscher: Materials, 2016, vol. 9, pp. 1–19.CrossRef
15.
Zurück zum Zitat D. De Castro, R. Rementeria, J. Vivas, T. Sourmail, J. Poplawsky, E. Urones-Garrote, J. Jimenez, C. Capdevila, and F. Caballero: Mater. Character., 2020, vol. 160, pp. 1–30. D. De Castro, R. Rementeria, J. Vivas, T. Sourmail, J. Poplawsky, E. Urones-Garrote, J. Jimenez, C. Capdevila, and F. Caballero: Mater. Character., 2020, vol. 160, pp. 1–30.
16.
Zurück zum Zitat P. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.CrossRef P. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.CrossRef
17.
Zurück zum Zitat B. Shendy, M. Yoozbashi, B. Avishan, and S. Yazdani: Acta Metall. Sinica Engl. Lett., 2014, vol. 27 (2), pp. 233–38.CrossRef B. Shendy, M. Yoozbashi, B. Avishan, and S. Yazdani: Acta Metall. Sinica Engl. Lett., 2014, vol. 27 (2), pp. 233–38.CrossRef
18.
Zurück zum Zitat J. Yang, T. Wang, B. Zhang, and F. Zhang: Scripta Mater., 2012, vol. 66, pp. 363–66.CrossRef J. Yang, T. Wang, B. Zhang, and F. Zhang: Scripta Mater., 2012, vol. 66, pp. 363–66.CrossRef
19.
Zurück zum Zitat A. Leiro: Luleå University of Technology, Luleå, Sweden, 2014, pp. 1–138. A. Leiro: Luleå University of Technology, Luleå, Sweden, 2014, pp. 1–138.
20.
Zurück zum Zitat O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, J. Jiménez, and C. García-Mateo: Metals, 2020, vol. 10, pp. 1–18.CrossRef O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, J. Jiménez, and C. García-Mateo: Metals, 2020, vol. 10, pp. 1–18.CrossRef
21.
Zurück zum Zitat ASTM Standard E350-18, ASTM International, ASTM, Warrendale, PA, 2018, pp. 1–64. ASTM Standard E350-18, ASTM International, ASTM, Warrendale, PA, 2018, pp. 1–64.
22.
Zurück zum Zitat ASTM Standard E8/E8M-16a, ASTM International, ASTM, Warrendale, PA, 2016, pp. 1–30. ASTM Standard E8/E8M-16a, ASTM International, ASTM, Warrendale, PA, 2016, pp. 1–30.
23.
Zurück zum Zitat Testing of Metallic Materials, German National Standard DIN 50113, 2018, pp. 1–15. Testing of Metallic Materials, German National Standard DIN 50113, 2018, pp. 1–15.
25.
Zurück zum Zitat ASTM Standard E3-11, ASTM International, ASTM, Warrendale, PA, 2011, vol. i, pp. 1–12. ASTM Standard E3-11, ASTM International, ASTM, Warrendale, PA, 2011, vol. i, pp. 1–12.
26.
Zurück zum Zitat C. Garcia-Mateo, J. Jimenez, B. Lopez-Ezquerra, R. Rementeria, L. Morales-Rivas, M. Kuntz, and F. Caballero: Mater. Charact., 2016, vol. 122, pp. 83–89.CrossRef C. Garcia-Mateo, J. Jimenez, B. Lopez-Ezquerra, R. Rementeria, L. Morales-Rivas, M. Kuntz, and F. Caballero: Mater. Charact., 2016, vol. 122, pp. 83–89.CrossRef
27.
Zurück zum Zitat C. García de Andres, F. Caballero, C. Capdevila, and D. San Martín: Mater. Character., 2003, vol. 49, pp. 121–27.CrossRef C. García de Andres, F. Caballero, C. Capdevila, and D. San Martín: Mater. Character., 2003, vol. 49, pp. 121–27.CrossRef
28.
Zurück zum Zitat ASTM Standard E112-13, ASTM International, Warrendale, PA, 2013, pp. 1–28. ASTM Standard E112-13, ASTM International, Warrendale, PA, 2013, pp. 1–28.
29.
Zurück zum Zitat D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74. D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.
30.
Zurück zum Zitat A. Navarro-Lopez, J. Sietsma, and M.-J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1028–39.CrossRef A. Navarro-Lopez, J. Sietsma, and M.-J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1028–39.CrossRef
31.
Zurück zum Zitat ASTM Standard E562-19, ASTM International, Warrendale, PA, 2016, pp. 1–7. ASTM Standard E562-19, ASTM International, Warrendale, PA, 2016, pp. 1–7.
32.
Zurück zum Zitat T. Nyyssönen, P. Peura, and V. Kuokkala: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6426–41.CrossRef T. Nyyssönen, P. Peura, and V. Kuokkala: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6426–41.CrossRef
33.
Zurück zum Zitat C. Garcia-Mateo and F. Caballero: Handbook of Mechanical Nanostructuring, 1st ed., 2015, pp. 35–65. C. Garcia-Mateo and F. Caballero: Handbook of Mechanical Nanostructuring, 1st ed., 2015, pp. 35–65.
35.
Zurück zum Zitat H. Bhadeshia: Bainite in Steels, 3rd ed., Maney Publishing, Leeds, United Kingdom, 2015, pp. 1–616. H. Bhadeshia: Bainite in Steels, 3rd ed., Maney Publishing, Leeds, United Kingdom, 2015, pp. 1–616.
37.
Zurück zum Zitat C. García-Mateo, J. Jiménez, H. Yen, M. Miller, L. Morales-Rivas, M. Kuntz, S. Ringer, J. Yang, and F. Caballero: Acta Mater., 2015, vol. 91, pp. 162–73.CrossRef C. García-Mateo, J. Jiménez, H. Yen, M. Miller, L. Morales-Rivas, M. Kuntz, S. Ringer, J. Yang, and F. Caballero: Acta Mater., 2015, vol. 91, pp. 162–73.CrossRef
38.
Zurück zum Zitat M. Sarizam and Y. Komiz: J. Mech. Eng. Sci., 2014, vol. 7, pp. 1103–14.CrossRef M. Sarizam and Y. Komiz: J. Mech. Eng. Sci., 2014, vol. 7, pp. 1103–14.CrossRef
39.
Zurück zum Zitat T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.CrossRef T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.CrossRef
40.
Zurück zum Zitat H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 438, pp. 140–44.CrossRef H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 438, pp. 140–44.CrossRef
42.
Zurück zum Zitat M. Meyers and K. Chawla: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, United Kingdom, 2008, p. 731.CrossRef M. Meyers and K. Chawla: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, United Kingdom, 2008, p. 731.CrossRef
43.
Zurück zum Zitat S. Chatterjee and H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23 (9), pp. 1101–04.CrossRef S. Chatterjee and H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23 (9), pp. 1101–04.CrossRef
44.
Zurück zum Zitat B. Avishan, S. Yazdani, F. Caballero, T. Wang, and C. García-Mateo: Mater. Sci. Technol., 2015, vol. 31 (12), pp. 1508–20.CrossRef B. Avishan, S. Yazdani, F. Caballero, T. Wang, and C. García-Mateo: Mater. Sci. Technol., 2015, vol. 31 (12), pp. 1508–20.CrossRef
45.
Zurück zum Zitat M. Klesnil and P. Lukác: Materials Science Monographs, 2nd ed., 1992, vol. 71, pp. 1–270. M. Klesnil and P. Lukác: Materials Science Monographs, 2nd ed., 1992, vol. 71, pp. 1–270.
46.
47.
Zurück zum Zitat H. Beladi, Y. Adachi, I. Timokhina, and P. Hodgson: Scripta Mater., 2009, vol. 60, pp. 455–58.CrossRef H. Beladi, Y. Adachi, I. Timokhina, and P. Hodgson: Scripta Mater., 2009, vol. 60, pp. 455–58.CrossRef
48.
Zurück zum Zitat H. Carpenter and S. Tamura: Proc. R. Soc. Lond. Ser. A, 113(763), 28–43 (1926)CrossRef H. Carpenter and S. Tamura: Proc. R. Soc. Lond. Ser. A, 113(763), 28–43 (1926)CrossRef
49.
Zurück zum Zitat T. Meng-Yin, W. Wen-Hsiung, and H. Yung-Fu: Mater. Trans., 2008, vol. 49 (3), pp. 559–64.CrossRef T. Meng-Yin, W. Wen-Hsiung, and H. Yung-Fu: Mater. Trans., 2008, vol. 49 (3), pp. 559–64.CrossRef
51.
Zurück zum Zitat M. Batista, M. Marinelli, and I. Alvarez‐Armas: Fat. Fract. Eng. Mater. Struct., 2019, vol. 42 (1), pp. 61–68.CrossRef M. Batista, M. Marinelli, and I. Alvarez‐Armas: Fat. Fract. Eng. Mater. Struct., 2019, vol. 42 (1), pp. 61–68.CrossRef
52.
Zurück zum Zitat A. Ghosh, S. Kundu, and D. Chakrabarti: Scripta Mater., 2014, vol. 81, pp. 8–11.CrossRef A. Ghosh, S. Kundu, and D. Chakrabarti: Scripta Mater., 2014, vol. 81, pp. 8–11.CrossRef
53.
54.
Zurück zum Zitat A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Int. J. Plasticity, 2018, vol. 104, pp. 104–33.CrossRef A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Int. J. Plasticity, 2018, vol. 104, pp. 104–33.CrossRef
55.
Zurück zum Zitat A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Mater. Sci., 2016, pp. 1–18. A. Chatterjee, A. Ghosh, A. Moitra, A. Bhaduri, R. Mitra, and D. Chakrabarti: Mater. Sci., 2016, pp. 1–18.
56.
Zurück zum Zitat W. Gong, Y. Tomota, Y. Adachi, A. Paradowska, J. Kelleher, and S. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.CrossRef W. Gong, Y. Tomota, Y. Adachi, A. Paradowska, J. Kelleher, and S. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.CrossRef
57.
Zurück zum Zitat O. Rios-Diez: Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2020, pp. 1–139. O. Rios-Diez: Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2020, pp. 1–139.
Metadaten
Titel
Microstructural and Rotating-Bending Fatigue Behavior Relationship in Nanostructured Carbo-Austempered Cast Steels
verfasst von
Oscar Ríos-Diez
Ricardo Aristizábal-Sierra
Claudia Serna-Giraldo
Adriana Eres-Castellanos
Carlos García-Mateo
Publikationsdatum
23.04.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06266-w

Weitere Artikel der Ausgabe 7/2021

Metallurgical and Materials Transactions A 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.