Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2019

06.03.2019

Microstructural Evolution of Graded Transition Joints

verfasst von: Jonathan P. Galler, John N. DuPont, Sudarsanam Suresh Babu, Mohan Subramanian

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon diffusion and the associated microstructural changes in dissimilar metal welds at elevated temperatures lead to a microstructure that is susceptible to premature failure. Graded transition joints (GTJs) can potentially provide a viable replacement to prolong the service life of these components. The purpose of the current investigation is to fabricate, age, and characterize GTJs using three candidate filler metals (Inconel 82, EPRI P87, and 347H) to understand the microstructural evolution at elevated temperatures. Microhardness measurements were performed on the GTJs in the as-welded and aged conditions to understand the initial strength gradients throughout the graded region and how they evolve with aging time. Additionally, energy dispersive spectrometry was performed to measure the compositional gradients, which were input into thermodynamic and kinetic calculations to understand the carbon diffusion behavior and phase stability. Enhanced carbon diffusion occurred at the layer interfaces in the graded region of the GTJ, which indicated important regions that undergo microstructural evolution. The hardness results also revealed hardness changes at the layer interfaces. The analyzed interfaces demonstrated that carbon diffusion and corresponding carbide redistribution occurred that accounted for the observed hardness gradients. Additionally, the transition from a martensitic to austenitic region was observed in each GTJ that contributed to the hardness variations in the graded region. Finally, the formation of a nickel-rich martensitic constituent was observed in the graded region of all filler metals after aging. This constituent was originally austenite at the aging temperature, and transformed to martensite with no change in composition upon cooling. The morphologies of the constituent in the three filler metals are presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat G. Çam and M. Koçak: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 159–75.CrossRef G. Çam and M. Koçak: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 159–75.CrossRef
3.
Zurück zum Zitat G. Çam and G. Ipekoglu: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1851–66.CrossRef G. Çam and G. Ipekoglu: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1851–66.CrossRef
4.
Zurück zum Zitat R.L. Klueh and J.F. King: Weld. J., 1982, 62, pp. 302–11. R.L. Klueh and J.F. King: Weld. J., 1982, 62, pp. 302–11.
6.
Zurück zum Zitat R. Dooley and P. Chang: Proc. Int. Conf. on Boiler tube failures in fossil plants, 1997, pp. 2–10. R. Dooley and P. Chang: Proc. Int. Conf. on Boiler tube failures in fossil plants, 1997, pp. 2–10.
7.
Zurück zum Zitat I. Ramu and S.C. Mohanty: Procedia Mater. Sci., 2014, vol. 6, pp. 460–7.CrossRef I. Ramu and S.C. Mohanty: Procedia Mater. Sci., 2014, vol. 6, pp. 460–7.CrossRef
8.
Zurück zum Zitat M. Bhandari and K. Purohit: IOSR J. Mech. Civ. Eng., 2014, vol. 10, pp. 46–55.CrossRef M. Bhandari and K. Purohit: IOSR J. Mech. Civ. Eng., 2014, vol. 10, pp. 46–55.CrossRef
9.
Zurück zum Zitat A. Gupta and M. Talha: Prog. Aerosp. Sci., 2015, vol. 79, pp. 1–14.CrossRef A. Gupta and M. Talha: Prog. Aerosp. Sci., 2015, vol. 79, pp. 1–14.CrossRef
10.
Zurück zum Zitat C.D. Lundin: Weld. J., 1982, 61, p. 58–63. C.D. Lundin: Weld. J., 1982, 61, p. 58–63.
11.
Zurück zum Zitat M. Gittos and T. Gooch: Weld. Res. Suppl., 1992, 71, pp. 461–72. M. Gittos and T. Gooch: Weld. Res. Suppl., 1992, 71, pp. 461–72.
12.
Zurück zum Zitat G.J. Brentrup and J.N. DuPont: Weld. J., 2013, vol. 92, pp. 72–9. G.J. Brentrup and J.N. DuPont: Weld. J., 2013, vol. 92, pp. 72–9.
13.
Zurück zum Zitat Brentrup, G. J., Snowden, B. S., DuPont, J. N., & Grenestedt, J. L. (2012). Design considerations of graded transition joints for welding dissimilar alloys. Welding Journal, 91, 252-59. Brentrup, G. J., Snowden, B. S., DuPont, J. N., & Grenestedt, J. L. (2012). Design considerations of graded transition joints for welding dissimilar alloys. Welding Journal, 91, 252-59.
14.
Zurück zum Zitat N. Sridharan, E. Cakmak, B. Jordan, D. Leonard, W.H. Peter, R.R. Dehoff, D. Gandy, and S.S. Babu: Weld. J., 2017, vol. 96, p. 295-306. N. Sridharan, E. Cakmak, B. Jordan, D. Leonard, W.H. Peter, R.R. Dehoff, D. Gandy, and S.S. Babu: Weld. J., 2017, vol. 96, p. 295-306.
15.
Zurück zum Zitat J.N. Dupont and A.R. Marder: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 481–9.CrossRef J.N. Dupont and A.R. Marder: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 481–9.CrossRef
16.
Zurück zum Zitat J.P. Galler, J.N. Dupont, S.S. Babu, and M. Subramanian: Metall. Mater. Trans. A, 2018. J.P. Galler, J.N. Dupont, S.S. Babu, and M. Subramanian: Metall. Mater. Trans. A, 2018.
17.
Zurück zum Zitat D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin: 2007, vol. 29, pp. 92–101. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin: 2007, vol. 29, pp. 92–101.
18.
Zurück zum Zitat A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilibria, 2000, vol. 21, pp. 269–80.CrossRef A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilibria, 2000, vol. 21, pp. 269–80.CrossRef
19.
Zurück zum Zitat Thermo-Calc Software MOB2 TCS Alloy Mobility Database. Thermo-Calc Software MOB2 TCS Alloy Mobility Database.
20.
Zurück zum Zitat Thermo-Calc Software TCFE7-TCS Steels/Fe-Alloys Database version 7. Thermo-Calc Software TCFE7-TCS Steels/Fe-Alloys Database version 7.
21.
Zurück zum Zitat Thermo-Calc Software Ni-Data-v7 Ni-Alloys Database. Thermo-Calc Software Ni-Data-v7 Ni-Alloys Database.
22.
23.
Zurück zum Zitat K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. a, 2001, vol. 32A, pp. 115–24.CrossRef K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. a, 2001, vol. 32A, pp. 115–24.CrossRef
24.
Zurück zum Zitat J.D. Parker and G.C. Stratford: J. Mater. Sci., 2000, vol. 35, pp. 4099–107.CrossRef J.D. Parker and G.C. Stratford: J. Mater. Sci., 2000, vol. 35, pp. 4099–107.CrossRef
25.
Zurück zum Zitat Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, and H. Li: J. Mater. Res., 2015, vol. 30, pp. 3642–52.CrossRef Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, and H. Li: J. Mater. Res., 2015, vol. 30, pp. 3642–52.CrossRef
26.
Zurück zum Zitat S.W. Banovic, J.N. Dupont, and A.R. Marder: Weld. J., 2001, 80, pp. 63–70. S.W. Banovic, J.N. Dupont, and A.R. Marder: Weld. J., 2001, 80, pp. 63–70.
27.
Zurück zum Zitat J.N. Dupont and C.S. Kusko: Weld. J., 2007, vol. 86, p. 51s–54s. J.N. Dupont and C.S. Kusko: Weld. J., 2007, vol. 86, p. 51s–54s.
28.
Zurück zum Zitat K.W. Andrews: J. Iron Steel Inst., 1965, 203, pp. 721–27. K.W. Andrews: J. Iron Steel Inst., 1965, 203, pp. 721–27.
29.
Zurück zum Zitat R.J. Christoffel and M.R. Curran: Weld. J., 1956, vol. 35, 457-468. R.J. Christoffel and M.R. Curran: Weld. J., 1956, vol. 35, 457-468.
30.
Zurück zum Zitat D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Trasformations in Metals and Alloys, Third., Taylor and Francis Group, 2009. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Trasformations in Metals and Alloys, Third., Taylor and Francis Group, 2009.
31.
Zurück zum Zitat L. S. Darken: Metall. Mater. Trans. B, 1948, vol. 41B, 430–38. L. S. Darken: Metall. Mater. Trans. B, 1948, vol. 41B, 430–38.
32.
Zurück zum Zitat J.F. Eckel: Weld. J., 1964, vol. 43, 170-78. J.F. Eckel: Weld. J., 1964, vol. 43, 170-78.
33.
Zurück zum Zitat G. Krauss: Steels: Processing, Structure, and Performance, ASM International, 2015. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, 2015.
34.
Zurück zum Zitat Sindo K (2003) Welding Metallurgy, Wiley, New York, pp. 822-832. Sindo K (2003) Welding Metallurgy, Wiley, New York, pp. 822-832.
35.
36.
Zurück zum Zitat E.C. Bain: Functions of the Alloying Elements in Steel, American Society for Metals, 1939. E.C. Bain: Functions of the Alloying Elements in Steel, American Society for Metals, 1939.
37.
Zurück zum Zitat R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Fifth Edit., Wiley and Sons, 2013. R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Fifth Edit., Wiley and Sons, 2013.
38.
Zurück zum Zitat W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, vol. 94, Wiley, New York, 2007. W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, vol. 94, Wiley, New York, 2007.
39.
Zurück zum Zitat I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.CrossRef I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.CrossRef
40.
Zurück zum Zitat B. Shalchi Amirkhiz, S. Xu, J. Liang, and C. Bibby: in: 36th Annu. CNS Conf. B. Shalchi Amirkhiz, S. Xu, J. Liang, and C. Bibby: in: 36th Annu. CNS Conf.
41.
Zurück zum Zitat Y. Minami, H. Kimura, and M. Tanimura: J. Mater. Energy Syst., 1985, vol. 7, pp. 45–54.CrossRef Y. Minami, H. Kimura, and M. Tanimura: J. Mater. Energy Syst., 1985, vol. 7, pp. 45–54.CrossRef
42.
Zurück zum Zitat R. Mittal and B.S. Sidhu: J. Mater. Process. Technol., 2015, vol. 220, pp. 76–86.CrossRef R. Mittal and B.S. Sidhu: J. Mater. Process. Technol., 2015, vol. 220, pp. 76–86.CrossRef
43.
44.
Zurück zum Zitat H. Tanaka, M. Murata, F. Abe, and K. Yagi: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 1049–52.CrossRef H. Tanaka, M. Murata, F. Abe, and K. Yagi: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 1049–52.CrossRef
45.
Zurück zum Zitat R.L. Klueh and J.F. King: 1981, p. ORNL-5783. R.L. Klueh and J.F. King: 1981, p. ORNL-5783.
46.
Zurück zum Zitat E.J. Barrick, D. Jain, J.N. DuPont, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5890–910.CrossRef E.J. Barrick, D. Jain, J.N. DuPont, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5890–910.CrossRef
47.
Zurück zum Zitat D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. Trans. A, 2013, vol. 44, pp. 3046–59CrossRef D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. Trans. A, 2013, vol. 44, pp. 3046–59CrossRef
48.
Zurück zum Zitat D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3642–54.CrossRef D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3642–54.CrossRef
49.
Zurück zum Zitat S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu: J. Mater. Process. Technol., 2013, vol. 213, pp. 120–8.CrossRef S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu: J. Mater. Process. Technol., 2013, vol. 213, pp. 120–8.CrossRef
50.
Zurück zum Zitat F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku, C. Shiga, and S. Suzuki: Transcations JWRI, 1995, vol. 24, pp. 1–24. F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku, C. Shiga, and S. Suzuki: Transcations JWRI, 1995, vol. 24, pp. 1–24.
51.
Zurück zum Zitat Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.CrossRef Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.CrossRef
52.
Zurück zum Zitat C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.CrossRef C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.CrossRef
53.
Zurück zum Zitat X. Li, X. Ma, S. V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141–7.CrossRef X. Li, X. Ma, S. V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141–7.CrossRef
Metadaten
Titel
Microstructural Evolution of Graded Transition Joints
verfasst von
Jonathan P. Galler
John N. DuPont
Sudarsanam Suresh Babu
Mohan Subramanian
Publikationsdatum
06.03.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05138-8

Weitere Artikel der Ausgabe 5/2019

Metallurgical and Materials Transactions A 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.