Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2016

31.05.2016

Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet

verfasst von: Prabhat Chand Yadav, Arush Sinhal, Sandeep Sahu, Abir Roy, Shashank Shekhar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Severe plastic deformation (SPD) is routinely employed to modify microstructure to obtain improved mechanical properties, particularly strength. Constrained groove pressing (CGP) is one of the SPD techniques that has gained prominence recently. However, the efficacy of the method in terms of homogeneity of microstructure and properties has not been well explored. In this work, we examine the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explore homogeneity in their characteristics. We found that CGP is very effective in improving the mechanical properties of the alloy. Although the reduction in grain size with the number of passes in CGP is not as huge (~38 µm in annealed sample to ~10.2 µm in 1 pass sample) as is expected from a SPD technique, but there is a drastic improvement in ultimate tensile strength (~230 to ~380 MPa) which shows the effectiveness of this process. However, when mechanical properties were examined at smaller length scale using micro-indentation technique, it was found that hardness values of CGP processed samples were non-uniform along transverse direction with a distinct sinusoidal variation. Uniaxial tensile test data also showed strong anisotropy along principal directions. The cause of this anisotropy and non-uniformity in mechanical properties was found to lie in microstructural inhomogeneity which was found to exist at the length scale of the grooves of the die.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.H. Shin, J.-J. Park, Y.-S. Kim, and K.-T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1–2), p 98–103CrossRef D.H. Shin, J.-J. Park, Y.-S. Kim, and K.-T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1–2), p 98–103CrossRef
2.
Zurück zum Zitat F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32(6), p 3280–3286CrossRef F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32(6), p 3280–3286CrossRef
3.
Zurück zum Zitat M. Shaarbaf and M.R. Toroghinejad, Nano-grained Copper Strip Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2008, 473(1–2), p 28–33CrossRef M. Shaarbaf and M.R. Toroghinejad, Nano-grained Copper Strip Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2008, 473(1–2), p 28–33CrossRef
4.
Zurück zum Zitat S.A. Hosseini and H.D. Manesh, High-Strength, High-Conductivity Ultra-Fine Grains Commercial Pure Copper Produced by ARB Process, Mater. Des., 2009, 30(8), p 2911–2918CrossRef S.A. Hosseini and H.D. Manesh, High-Strength, High-Conductivity Ultra-Fine Grains Commercial Pure Copper Produced by ARB Process, Mater. Des., 2009, 30(8), p 2911–2918CrossRef
5.
Zurück zum Zitat X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, 460–461, p 204–213CrossRef X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, 460–461, p 204–213CrossRef
6.
Zurück zum Zitat F. Al-Mufadi and F. Djavanroodi, Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper, Int. J. Chem. Nucl. Mater. Metall. Eng., 2014, 8(1), p 30–34 F. Al-Mufadi and F. Djavanroodi, Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper, Int. J. Chem. Nucl. Mater. Metall. Eng., 2014, 8(1), p 30–34
7.
Zurück zum Zitat Z. Horita and T.G. Langdon, Achieving Exceptional Superplasticity in a Bulk Aluminum Alloy Processed by High-Pressure Torsion, Scr. Mater., 2008, 58(11), p 1029–1032CrossRef Z. Horita and T.G. Langdon, Achieving Exceptional Superplasticity in a Bulk Aluminum Alloy Processed by High-Pressure Torsion, Scr. Mater., 2008, 58(11), p 1029–1032CrossRef
8.
Zurück zum Zitat G. Khatibi, J. Horky, B. Weiss, and M.J. Zehetbauer, High Cycle Fatigue Behaviour of Copper Deformed by High Pressure Torsion, Int. J. Fatigue, 2010, 32(2), p 269–278CrossRef G. Khatibi, J. Horky, B. Weiss, and M.J. Zehetbauer, High Cycle Fatigue Behaviour of Copper Deformed by High Pressure Torsion, Int. J. Fatigue, 2010, 32(2), p 269–278CrossRef
9.
Zurück zum Zitat R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981CrossRef R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981CrossRef
10.
Zurück zum Zitat A. Babaei and M.M. Mashhadi, Tubular Pure Copper Grain Refining by Tube Cyclic Extrusion-Compression (TCEC) as a Severe Plastic Deformation Technique, Prog. Nat. Sci. Mater. Int., 2014, 24(6), p 623–630CrossRef A. Babaei and M.M. Mashhadi, Tubular Pure Copper Grain Refining by Tube Cyclic Extrusion-Compression (TCEC) as a Severe Plastic Deformation Technique, Prog. Nat. Sci. Mater. Int., 2014, 24(6), p 623–630CrossRef
11.
Zurück zum Zitat Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful Properties of Twist Extrusion, Mater. Sci. Eng. A, 2009, 503(1–2), p 14–17CrossRef Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful Properties of Twist Extrusion, Mater. Sci. Eng. A, 2009, 503(1–2), p 14–17CrossRef
12.
Zurück zum Zitat M.I. Latypov, E.Y. Yoon, D.J. Lee, R. Kulagin, Y. Beygelzimer, and M. Seyed, Salehi, and H. S. Kim, Microstructure and Mechanical Properties of Copper Processed by Twist Extrusion with a Reduced Twist-Line Slope, Metall. Mater. Trans. A, 2014, 45(4), p 2232–2241CrossRef M.I. Latypov, E.Y. Yoon, D.J. Lee, R. Kulagin, Y. Beygelzimer, and M. Seyed, Salehi, and H. S. Kim, Microstructure and Mechanical Properties of Copper Processed by Twist Extrusion with a Reduced Twist-Line Slope, Metall. Mater. Trans. A, 2014, 45(4), p 2232–2241CrossRef
13.
Zurück zum Zitat A. Krishnaiah, U. Chakkingal, and P. Venugopal, Applicability of the Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, 410–411, p 337–340CrossRef A. Krishnaiah, U. Chakkingal, and P. Venugopal, Applicability of the Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, 410–411, p 337–340CrossRef
14.
Zurück zum Zitat G.G. Niranjan and U. Chakkingal, Deep Drawability of Commercial Purity Aluminum Sheets Processed by Groove Pressing, J. Mater. Process. Technol., 2010, 210(11), p 1511–1516CrossRef G.G. Niranjan and U. Chakkingal, Deep Drawability of Commercial Purity Aluminum Sheets Processed by Groove Pressing, J. Mater. Process. Technol., 2010, 210(11), p 1511–1516CrossRef
15.
Zurück zum Zitat K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1–2), p 168–173CrossRef K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1–2), p 168–173CrossRef
16.
Zurück zum Zitat J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, and T.G. Langdon, Microstructural Evolution and Mechanical Properties of a Cu–Zr alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(25–26), p 7715–7722CrossRef J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, and T.G. Langdon, Microstructural Evolution and Mechanical Properties of a Cu–Zr alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(25–26), p 7715–7722CrossRef
17.
Zurück zum Zitat S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, and B. Clausen, Finite Element Analysis of the Plastic Deformation Zone and Working Load in Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2004, 382(1–2), p 217–236CrossRef S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, and B. Clausen, Finite Element Analysis of the Plastic Deformation Zone and Working Load in Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2004, 382(1–2), p 217–236CrossRef
18.
Zurück zum Zitat V. Patil Basavaraj, U. Chakkingal, and T.S. Prasanna Kumar, Study of Channel Angle Influence on Material Flow and Strain Inhomogeneity in Equal Channel Angular Pressing Using 3D Finite Element Simulation, J. Mater. Process. Technol., 2009, 209(1), p 89–95CrossRef V. Patil Basavaraj, U. Chakkingal, and T.S. Prasanna Kumar, Study of Channel Angle Influence on Material Flow and Strain Inhomogeneity in Equal Channel Angular Pressing Using 3D Finite Element Simulation, J. Mater. Process. Technol., 2009, 209(1), p 89–95CrossRef
19.
Zurück zum Zitat W. Wei, A.V. Nagasekhar, G. Chen, Y. Tick-Hon, and K.X. Wei, Origin of Inhomogenous Behavior During Equal Channel Angular Pressing, Scr. Mater., 2006, 54(11), p 1865–1869CrossRef W. Wei, A.V. Nagasekhar, G. Chen, Y. Tick-Hon, and K.X. Wei, Origin of Inhomogenous Behavior During Equal Channel Angular Pressing, Scr. Mater., 2006, 54(11), p 1865–1869CrossRef
20.
Zurück zum Zitat G. Purcek, B.S. Altan, I. Miskioglu, and P.H. Ooi, Processing of Eutectic Zn-5% Al Alloy by Equal-Channel Angular Pressing, J. Mater. Process. Technol., 2004, 148(3), p 279–287CrossRef G. Purcek, B.S. Altan, I. Miskioglu, and P.H. Ooi, Processing of Eutectic Zn-5% Al Alloy by Equal-Channel Angular Pressing, J. Mater. Process. Technol., 2004, 148(3), p 279–287CrossRef
21.
Zurück zum Zitat C.F. Zhu, F.P. Du, Q.Y. Jiao, X.M. Wang, A.Y. Chen, F. Liu, and D. Pan, Microstructure and Strength of Pure Cu with Large Grains Processed by Equal Channel Angular Pressing, Mater. Des., 2013, 52, p 23–29CrossRef C.F. Zhu, F.P. Du, Q.Y. Jiao, X.M. Wang, A.Y. Chen, F. Liu, and D. Pan, Microstructure and Strength of Pure Cu with Large Grains Processed by Equal Channel Angular Pressing, Mater. Des., 2013, 52, p 23–29CrossRef
22.
Zurück zum Zitat Z.S. Wang, Y.J. Guan, L.B. Song, and P. Liang, Finite Element Analysis and Deformation Homogeneity Optimization of Constrained Groove Pressing. Applied Mechanics and Materials, Trans Tech Publications, Dürnten, 2013, p 505–513 Z.S. Wang, Y.J. Guan, L.B. Song, and P. Liang, Finite Element Analysis and Deformation Homogeneity Optimization of Constrained Groove Pressing. Applied Mechanics and Materials, Trans Tech Publications, Dürnten, 2013, p 505–513
23.
Zurück zum Zitat K.S. Fong, D. Atsushi, T.M. Jen, and B.W. Chua, Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O, J. Manuf. Sci. Eng., 2015, 137(5), p 051004CrossRef K.S. Fong, D. Atsushi, T.M. Jen, and B.W. Chua, Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O, J. Manuf. Sci. Eng., 2015, 137(5), p 051004CrossRef
24.
Zurück zum Zitat A. Shirdel, A. Khajeh, and M.M. Moshksar, Experimental and Finite Element Investigation of Semi-constrained Groove Pressing Process, Mater. Des., 2010, 31(2), p 946–950CrossRef A. Shirdel, A. Khajeh, and M.M. Moshksar, Experimental and Finite Element Investigation of Semi-constrained Groove Pressing Process, Mater. Des., 2010, 31(2), p 946–950CrossRef
25.
Zurück zum Zitat A. Sajadi, M. Ebrahimi, and F. Djavanroodi, Experimental and Numerical Investigation of Al Properties Fabricated by CGP Process, Mater. Sci. Eng. A, 2012, 552, p 97–103CrossRef A. Sajadi, M. Ebrahimi, and F. Djavanroodi, Experimental and Numerical Investigation of Al Properties Fabricated by CGP Process, Mater. Sci. Eng. A, 2012, 552, p 97–103CrossRef
26.
Zurück zum Zitat Z.-S. Wang, Y.-J. Guan, G.-C. Wang, and C.-K. Zhong, Influences of Die Structure on Constrained Groove Pressing of Commercially Pure Ni Sheets, J. Mater. Process. Technol., 2015, 215, p 205–218CrossRef Z.-S. Wang, Y.-J. Guan, G.-C. Wang, and C.-K. Zhong, Influences of Die Structure on Constrained Groove Pressing of Commercially Pure Ni Sheets, J. Mater. Process. Technol., 2015, 215, p 205–218CrossRef
27.
Zurück zum Zitat F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-structure and Mechanical Properties, Mater. Sci. Eng. A, 2010, 527(16–17), p 4043–4049CrossRef F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-structure and Mechanical Properties, Mater. Sci. Eng. A, 2010, 527(16–17), p 4043–4049CrossRef
28.
Zurück zum Zitat F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S.R. Mohebpour, Application of CGP-Cross Route Process for Microstructure Refinement and Mechanical Properties Improvement in Steel Sheets, J. Manuf. Process., 2013, 15(4), p 533–541CrossRef F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S.R. Mohebpour, Application of CGP-Cross Route Process for Microstructure Refinement and Mechanical Properties Improvement in Steel Sheets, J. Manuf. Process., 2013, 15(4), p 533–541CrossRef
29.
Zurück zum Zitat M.S. Ghazani and A. Vajd, Finite Element Analysis of the Groove Pressing of Aluminum Alloy, Model. Simul. Mater. Sci. Eng., 2014, 4(1), p 32–36 M.S. Ghazani and A. Vajd, Finite Element Analysis of the Groove Pressing of Aluminum Alloy, Model. Simul. Mater. Sci. Eng., 2014, 4(1), p 32–36
30.
Zurück zum Zitat K. Peng, L. Su, L.L. Shaw, and K.W. Qian, Grain Refinement and Crack Prevention in Constrained Groove Pressing of Two-Phase Cu-Zn Alloys, Scr. Mater., 2007, 56(11), p 987–990CrossRef K. Peng, L. Su, L.L. Shaw, and K.W. Qian, Grain Refinement and Crack Prevention in Constrained Groove Pressing of Two-Phase Cu-Zn Alloys, Scr. Mater., 2007, 56(11), p 987–990CrossRef
31.
Zurück zum Zitat K. Peng, Y. Zhang, L.L. Shaw, and K.W. Qian, Microstructure Dependence of a Cu-38Zn Alloy on Processing Conditions of Constrained Groove Pressing, Acta Mater., 2009, 57(18), p 5543–5553CrossRef K. Peng, Y. Zhang, L.L. Shaw, and K.W. Qian, Microstructure Dependence of a Cu-38Zn Alloy on Processing Conditions of Constrained Groove Pressing, Acta Mater., 2009, 57(18), p 5543–5553CrossRef
32.
Zurück zum Zitat K. Peng, X. Mou, J. Zeng, L.L. Shaw, and K.W. Qian, Equivalent Strain, Microstructure and Hardness of H62 Brass Deformed by Constrained Groove Pressing, Comput. Mater. Sci., 2011, 50(4), p 1526–1532CrossRef K. Peng, X. Mou, J. Zeng, L.L. Shaw, and K.W. Qian, Equivalent Strain, Microstructure and Hardness of H62 Brass Deformed by Constrained Groove Pressing, Comput. Mater. Sci., 2011, 50(4), p 1526–1532CrossRef
33.
Zurück zum Zitat X. Mou, K. Peng, J. Zeng, L.L. Shaw, and K.W. Qian, The Influence of the Equivalent Strain on the Microstructure and Hardness of H62 Brass Subjected to Multi-cycle Constrained Groove Pressing, J. Mater. Process. Technol., 2011, 211(4), p 590–596CrossRef X. Mou, K. Peng, J. Zeng, L.L. Shaw, and K.W. Qian, The Influence of the Equivalent Strain on the Microstructure and Hardness of H62 Brass Subjected to Multi-cycle Constrained Groove Pressing, J. Mater. Process. Technol., 2011, 211(4), p 590–596CrossRef
34.
Zurück zum Zitat J.W. Lee and J.J. Park, Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement, J. Mater. Process. Technol., 2002, 130–131, p 208–213CrossRef J.W. Lee and J.J. Park, Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement, J. Mater. Process. Technol., 2002, 130–131, p 208–213CrossRef
35.
Zurück zum Zitat F. Khakbaz and M. Kazeminezhad, Work Hardening and Mechanical Properties of Severely Deformed AA3003 by Constrained Groove Pressing, J. Manuf. Process., 2012, 14(1), p 20–25CrossRef F. Khakbaz and M. Kazeminezhad, Work Hardening and Mechanical Properties of Severely Deformed AA3003 by Constrained Groove Pressing, J. Manuf. Process., 2012, 14(1), p 20–25CrossRef
36.
Zurück zum Zitat F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1995 F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1995
37.
Zurück zum Zitat M. Richert, Q. Liu, and N. Hansen, Microstructural Evolution Over a Large Strain Range in Aluminium Deformed by Cyclic-Extrusion-Compression, Mater. Sci. Eng. A, 1999, 260(1–2), p 275–283CrossRef M. Richert, Q. Liu, and N. Hansen, Microstructural Evolution Over a Large Strain Range in Aluminium Deformed by Cyclic-Extrusion-Compression, Mater. Sci. Eng. A, 1999, 260(1–2), p 275–283CrossRef
38.
Zurück zum Zitat B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim, Microstructure and Corrosion Properties of Ultrafine-Grained Interstitial Free Steel, Mater. Sci. Eng. A, 2007, 462(1–2), p 243–247CrossRef B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim, Microstructure and Corrosion Properties of Ultrafine-Grained Interstitial Free Steel, Mater. Sci. Eng. A, 2007, 462(1–2), p 243–247CrossRef
39.
Zurück zum Zitat B. Tolaminejad and K. Dehghani, Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Mater. Des., 2012, 34, p 285–292CrossRef B. Tolaminejad and K. Dehghani, Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Mater. Des., 2012, 34, p 285–292CrossRef
40.
Zurück zum Zitat A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13–28CrossRef A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13–28CrossRef
41.
Zurück zum Zitat A. Yamashita, Z. Horita, and T.G. Langdon, Improving the Mechanical Properties of Magnesium and a Magnesium Alloy Through Severe Plastic Deformation, Mater. Sci. Eng. A, 2001, 300(1–2), p 142–147CrossRef A. Yamashita, Z. Horita, and T.G. Langdon, Improving the Mechanical Properties of Magnesium and a Magnesium Alloy Through Severe Plastic Deformation, Mater. Sci. Eng. A, 2001, 300(1–2), p 142–147CrossRef
42.
Zurück zum Zitat A. Krishnaiah, U. Chakkingal, and P. Venugopal, Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scr. Mater., 2005, 52(12), p 1229–1233CrossRef A. Krishnaiah, U. Chakkingal, and P. Venugopal, Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scr. Mater., 2005, 52(12), p 1229–1233CrossRef
43.
Zurück zum Zitat N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, G.I. Raab, and R.Z. Valiev, Effect of Cold Rolling on Microstructure and Mechanical Properties of Copper Subjected to ECAP with Various Numbers of Passes, Mater. Sci. Eng. A, 2012, 554, p 105–115CrossRef N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, G.I. Raab, and R.Z. Valiev, Effect of Cold Rolling on Microstructure and Mechanical Properties of Copper Subjected to ECAP with Various Numbers of Passes, Mater. Sci. Eng. A, 2012, 554, p 105–115CrossRef
44.
Zurück zum Zitat M. Ebrahimi and F. Djavanroodi, Experimental and Numerical Analyses of Pure Copper During ECFE Process as a Novel Severe Plastic Deformation Method, Prog. Nat. Sci. Mater. Int., 2014, 24(1), p 68–74CrossRef M. Ebrahimi and F. Djavanroodi, Experimental and Numerical Analyses of Pure Copper During ECFE Process as a Novel Severe Plastic Deformation Method, Prog. Nat. Sci. Mater. Int., 2014, 24(1), p 68–74CrossRef
45.
Zurück zum Zitat V.Y. Gertsman and S.M. Bruemmer, Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys, Acta Mater., 2001, 49(9), p 1589–1598CrossRef V.Y. Gertsman and S.M. Bruemmer, Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys, Acta Mater., 2001, 49(9), p 1589–1598CrossRef
46.
Zurück zum Zitat M. Qian and J.C. Lippold, The Effect of Annealing Twin-Generated Special Grain Boundaries on HAZ Liquation Cracking of Nickel-Base Superalloys, Acta Mater., 2003, 51(12), p 3351–3361CrossRef M. Qian and J.C. Lippold, The Effect of Annealing Twin-Generated Special Grain Boundaries on HAZ Liquation Cracking of Nickel-Base Superalloys, Acta Mater., 2003, 51(12), p 3351–3361CrossRef
47.
Zurück zum Zitat A. Vaid, K. Mittal, S. Sahu, and S. Shekhar, Controlled Evolution of Coincidence Site Lattice Related Grain Boundaries, Trans. Indian Inst. Met., 2016. doi:10.1007/s12666-016-0834-7 A. Vaid, K. Mittal, S. Sahu, and S. Shekhar, Controlled Evolution of Coincidence Site Lattice Related Grain Boundaries, Trans. Indian Inst. Met., 2016. doi:10.​1007/​s12666-016-0834-7
48.
Zurück zum Zitat J. Lubahn and G. Sachs, Bending of an Ideal Plastic Metal, Trans. ASME, 1950, 72, p 201–208 J. Lubahn and G. Sachs, Bending of an Ideal Plastic Metal, Trans. ASME, 1950, 72, p 201–208
49.
Zurück zum Zitat B.W. Shaffer and E.E. Ungar, Mechanics of the Sheet-Bending Process, J. Appl. Mech., 1960, 27(1), p 34–40CrossRef B.W. Shaffer and E.E. Ungar, Mechanics of the Sheet-Bending Process, J. Appl. Mech., 1960, 27(1), p 34–40CrossRef
Metadaten
Titel
Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet
verfasst von
Prabhat Chand Yadav
Arush Sinhal
Sandeep Sahu
Abir Roy
Shashank Shekhar
Publikationsdatum
31.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2142-0

Weitere Artikel der Ausgabe 7/2016

Journal of Materials Engineering and Performance 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.