Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2018

20.09.2018

Microstructural Investigation of VPPA–GMAW Welded 7A52 Aluminum Alloys

verfasst von: Haitao Hong, Yongquan Han, Qinghu Yao, Jiahui Tong

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the microstructural features of 7A52 heat-treatable aluminum alloys welded by variable polarity plasma arc (VPPA) combined with gas metal arc welding (GMAW) (VPPA–GMAW) were investigated and compared with those of 7A52 aluminum alloys welded by GMAW. The grain structures and modification of the precipitates were analyzed by optical microscopy and transmission electron microscopy. Complementary to modification of the precipitates, the precipitation evolution in the heat-affected zone and magnesium loss in the fusion zone were measured by differential scanning calorimetry and inductively coupled plasma spectroscopy. In VPPA–GMAW, the weld only needs one pass by depositing on one side of the 10-mm-thick aluminum alloy plates because of the large penetration capability of VPPA and good fluidity of the molten metal in the weld pool. Accordingly, the effect of excessive heat input on the microstructure can be minimized. The results show that the grain growth is not obvious and the magnesium loss is small in the fusion zone of VPPA–GMAW compared with that of GMAW under the condition of equal heat input to the workpiece. Small precipitates inside the grains remain homogeneously distributed, and a large volume fraction of the η′ phase exists. The VPPA–GMAW weld exhibits less tendency to soften; thus, VPPA–GMAW is appropriate for welding thick-plate aluminum alloys with a high production rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.D. Liu, Y.B. Yuan, C.B. Li, J.H. You, and X.M. Zhang, Influence of Cooling Rate After Homogenization on Microstructure and Mechanical Properties of Aluminum Alloy 7050, Met. Mater. Int., 2012, 18(4), p 679–683CrossRef S.D. Liu, Y.B. Yuan, C.B. Li, J.H. You, and X.M. Zhang, Influence of Cooling Rate After Homogenization on Microstructure and Mechanical Properties of Aluminum Alloy 7050, Met. Mater. Int., 2012, 18(4), p 679–683CrossRef
2.
Zurück zum Zitat M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, and R. Yavari, Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-Welds, Multidiscip. Model. Mater. Struct., 2014, 10(2), p 176–210CrossRef M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, and R. Yavari, Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-Welds, Multidiscip. Model. Mater. Struct., 2014, 10(2), p 176–210CrossRef
3.
Zurück zum Zitat M. Grujicic, S. Ramaswami, J.S. Snipes, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-Physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22(10), p 2950–2969CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-Physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22(10), p 2950–2969CrossRef
4.
Zurück zum Zitat M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22(6), p 1541–1557CrossRef M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22(6), p 1541–1557CrossRef
5.
Zurück zum Zitat M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform, 2013, 22(5), p 1209–1222CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform, 2013, 22(5), p 1209–1222CrossRef
6.
Zurück zum Zitat V.I. Babushok, F.C. DeLucia, J.L. Gottfried, C.A. Munson, and A.W. Miziolek, Double Pulse Laser Ablation and Plasma: Laser Induced Breakdown Spectroscopy Signal Enhancement, Spectrochim. Acta B At. Spectrosc., 2006, 61(9), p 999–1014CrossRef V.I. Babushok, F.C. DeLucia, J.L. Gottfried, C.A. Munson, and A.W. Miziolek, Double Pulse Laser Ablation and Plasma: Laser Induced Breakdown Spectroscopy Signal Enhancement, Spectrochim. Acta B At. Spectrosc., 2006, 61(9), p 999–1014CrossRef
7.
Zurück zum Zitat J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigations of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729CrossRef J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigations of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729CrossRef
8.
Zurück zum Zitat W.G. Essers and A.C. Liefkens, Plasma-MIG Welding Developed by Philips, Mach. Prod. Eng., 1972, 1(11), p 632–633 W.G. Essers and A.C. Liefkens, Plasma-MIG Welding Developed by Philips, Mach. Prod. Eng., 1972, 1(11), p 632–633
9.
Zurück zum Zitat K. Ono, Z.J. Liu, T. Era, T. Uezono, T. Ueyama, M. Tanaka, and K. Nakata, Development of a Plasma MIG Welding System for Aluminium, Weld. Int., 2009, 23(11), p 805–809CrossRef K. Ono, Z.J. Liu, T. Era, T. Uezono, T. Ueyama, M. Tanaka, and K. Nakata, Development of a Plasma MIG Welding System for Aluminium, Weld. Int., 2009, 23(11), p 805–809CrossRef
10.
Zurück zum Zitat H. Ton, Physical Properties of the Plasma-MIG Welding Arc, J. Phys. D Appl. Phys., 1975, 8(8), p 922–933CrossRef H. Ton, Physical Properties of the Plasma-MIG Welding Arc, J. Phys. D Appl. Phys., 1975, 8(8), p 922–933CrossRef
11.
Zurück zum Zitat H. Terasaki and S.W. Simpson, Modelling of the GMAW System in Free Flight and Short Circuiting Transfer, Sci. Technol. Weld. Joining, 2005, 10(1), p 120–124CrossRef H. Terasaki and S.W. Simpson, Modelling of the GMAW System in Free Flight and Short Circuiting Transfer, Sci. Technol. Weld. Joining, 2005, 10(1), p 120–124CrossRef
12.
Zurück zum Zitat W.G. Essers and R. Walter, Heat Transfer and Penetration Mechanisms with GMA and Plasma-GMA Welding, Weld. J., 1981, 60(2), p 37–42 W.G. Essers and R. Walter, Heat Transfer and Penetration Mechanisms with GMA and Plasma-GMA Welding, Weld. J., 1981, 60(2), p 37–42
13.
Zurück zum Zitat A.A. Resende, V.A. Ferraresi, A. Scotti, and J.C. Dutra, Influence of Welding Current in Plasma-MIG Weld Process on the Bead Weld Geometry and Wire Fusion Rate, Weld. Int., 2011, 25(12), p 910–916CrossRef A.A. Resende, V.A. Ferraresi, A. Scotti, and J.C. Dutra, Influence of Welding Current in Plasma-MIG Weld Process on the Bead Weld Geometry and Wire Fusion Rate, Weld. Int., 2011, 25(12), p 910–916CrossRef
14.
Zurück zum Zitat H.T. Hong, Y.Q. Han, M.H. Du, and J.H. Tong, Investigation on Droplet Momentum in VPPA-GMAW Hybrid Welding of Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2016, 86(5–8), p 2301–2308CrossRef H.T. Hong, Y.Q. Han, M.H. Du, and J.H. Tong, Investigation on Droplet Momentum in VPPA-GMAW Hybrid Welding of Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2016, 86(5–8), p 2301–2308CrossRef
15.
Zurück zum Zitat T. Yang, H.M. Gao, S.H. Zhang, and L. Wu, Interface Behavior of Copper and Steel by Plasma-MIG Hybrid Arc Welding, Acta Metall. Sin. (Engl. Lett.), 2013, 26(3), p 328–332CrossRef T. Yang, H.M. Gao, S.H. Zhang, and L. Wu, Interface Behavior of Copper and Steel by Plasma-MIG Hybrid Arc Welding, Acta Metall. Sin. (Engl. Lett.), 2013, 26(3), p 328–332CrossRef
16.
Zurück zum Zitat S.J. Chen, F. Jiang, J.L. Zhang, N. Huang, and Y.M. Zhang, Principle of Weld Formation in Variable Polarity Keyhole Plasma Arc Transverse Welding of Aluminum Alloy, Trans. China. Weld. Inst., 2013, 34(4), p 1–6 S.J. Chen, F. Jiang, J.L. Zhang, N. Huang, and Y.M. Zhang, Principle of Weld Formation in Variable Polarity Keyhole Plasma Arc Transverse Welding of Aluminum Alloy, Trans. China. Weld. Inst., 2013, 34(4), p 1–6
17.
Zurück zum Zitat Q.L. Zhang, C.L. Fan, S.B. Lin, and C.L. Yang, Novel Soft Variable Polarity Plasma Arc and Its Influence on Keyhole in Horizontal Welding of Aluminium Alloys, Sci. Technol. Weld. Joining, 2014, 19(6), p 493–499CrossRef Q.L. Zhang, C.L. Fan, S.B. Lin, and C.L. Yang, Novel Soft Variable Polarity Plasma Arc and Its Influence on Keyhole in Horizontal Welding of Aluminium Alloys, Sci. Technol. Weld. Joining, 2014, 19(6), p 493–499CrossRef
18.
Zurück zum Zitat N.J. Woodward, I.M. Richardson, and A. Thomas, Variable Polarity Plasma Arc Welding of 6.35 mm Aluminium Alloys: Parameter Development and Preliminary Analysis, Sci. Technol. Weld. Joining, 2000, 5(1), p 21–25CrossRef N.J. Woodward, I.M. Richardson, and A. Thomas, Variable Polarity Plasma Arc Welding of 6.35 mm Aluminium Alloys: Parameter Development and Preliminary Analysis, Sci. Technol. Weld. Joining, 2000, 5(1), p 21–25CrossRef
19.
Zurück zum Zitat Y.Q. Han, P. Zhao, M.H. Du, and Q.H. Yao, Numerical Simulation of Aluminum Alloys Variable Polarity Plasma Arc Welding Temperature Field, China J. Mech. Eng., 2012, 48(24), p 33–37CrossRef Y.Q. Han, P. Zhao, M.H. Du, and Q.H. Yao, Numerical Simulation of Aluminum Alloys Variable Polarity Plasma Arc Welding Temperature Field, China J. Mech. Eng., 2012, 48(24), p 33–37CrossRef
20.
Zurück zum Zitat Y.Q. Han, H.T. Hong, L. Guo, and Q.H. Yao, Vertical Welding of Aluminum Alloy During Variable Polarity Plasma Arc Welding Process with AC-DC Mixing Output Current, Trans. China Weld. Inst., 2013, 34(9), p 59–62 Y.Q. Han, H.T. Hong, L. Guo, and Q.H. Yao, Vertical Welding of Aluminum Alloy During Variable Polarity Plasma Arc Welding Process with AC-DC Mixing Output Current, Trans. China Weld. Inst., 2013, 34(9), p 59–62
21.
Zurück zum Zitat S.C. Wang, F. Lefebvre, J.L. Yan, I. Sinclair, and M.J. Starink, VPPA Welds of Al-2024 Alloys: Analysis and Modeling of Local Microstructure and Strength, Mater. Sci. Eng. A, 2006, 431(1–2), p 123–136CrossRef S.C. Wang, F. Lefebvre, J.L. Yan, I. Sinclair, and M.J. Starink, VPPA Welds of Al-2024 Alloys: Analysis and Modeling of Local Microstructure and Strength, Mater. Sci. Eng. A, 2006, 431(1–2), p 123–136CrossRef
22.
Zurück zum Zitat G.D. Janaki Ram, T.K. Mitra, V. Shankar, and S. Sundaresan, Microstructural Refinement Through Inoculation of Type 7020 Al-Zn-Mg Alloy Welds and Its Effect on Hot Cracking and Tensile Property, J. Mater. Process. Technol., 2003, 142(1), p 174–181CrossRef G.D. Janaki Ram, T.K. Mitra, V. Shankar, and S. Sundaresan, Microstructural Refinement Through Inoculation of Type 7020 Al-Zn-Mg Alloy Welds and Its Effect on Hot Cracking and Tensile Property, J. Mater. Process. Technol., 2003, 142(1), p 174–181CrossRef
23.
Zurück zum Zitat L.F. Mondolfo, Structure of the Aluminium: Magnesium, Zinc Alloys, Metall. Rev., 1971, 16(1), p 95–124 L.F. Mondolfo, Structure of the Aluminium: Magnesium, Zinc Alloys, Metall. Rev., 1971, 16(1), p 95–124
24.
Zurück zum Zitat C.B. Fuller, M.W. Mahoney, M. Calabrese, and L. Micona, Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Mater. Sci. Eng. A, 2010, 527(9), p 2233–2240CrossRef C.B. Fuller, M.W. Mahoney, M. Calabrese, and L. Micona, Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Mater. Sci. Eng. A, 2010, 527(9), p 2233–2240CrossRef
25.
Zurück zum Zitat K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageong Treatment at 100° and 150°C, Mater. Sci. Eng. A, 1999, 270(1), p 55–63CrossRef K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageong Treatment at 100° and 150°C, Mater. Sci. Eng. A, 1999, 270(1), p 55–63CrossRef
26.
Zurück zum Zitat X.J. Jiang, J. Tafto, B. Noble, B. Holme, and G. Waterloo, Differential Scanning Calorimetry and Electron Diffraction Investigation on Low-Temperature Aging in Al-Zn-Mg Alloys, Metall. Mater. Trans. A, 2000, 31(2), p 339–348CrossRef X.J. Jiang, J. Tafto, B. Noble, B. Holme, and G. Waterloo, Differential Scanning Calorimetry and Electron Diffraction Investigation on Low-Temperature Aging in Al-Zn-Mg Alloys, Metall. Mater. Trans. A, 2000, 31(2), p 339–348CrossRef
27.
Zurück zum Zitat P.N. Adler and R. Delasi, Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050 and RX720 Alloys, Metall. Trans. A, 1977, 8(7), p 1185–1190CrossRef P.N. Adler and R. Delasi, Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050 and RX720 Alloys, Metall. Trans. A, 1977, 8(7), p 1185–1190CrossRef
28.
Zurück zum Zitat J.L. Petty-Galis and R.D. Goolsby, Calorimetric Evaluation of the Effects of SiC Concentration on Precipitation Processes in SiC Particulate-reinforced 7091 Aluminium, J. Mater. Sci., 1989, 24(4), p 1439–1446CrossRef J.L. Petty-Galis and R.D. Goolsby, Calorimetric Evaluation of the Effects of SiC Concentration on Precipitation Processes in SiC Particulate-reinforced 7091 Aluminium, J. Mater. Sci., 1989, 24(4), p 1439–1446CrossRef
29.
Zurück zum Zitat K.V. Jata, K.K. Sankaran, and J.J. Ruschau, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451, Metall. Mater. Trans. A, 2000, 31(9), p 2181–2192CrossRef K.V. Jata, K.K. Sankaran, and J.J. Ruschau, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451, Metall. Mater. Trans. A, 2000, 31(9), p 2181–2192CrossRef
30.
Zurück zum Zitat X.F. Lei, D. Ying, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, Met. Mater. Int., 2013, 22(9), p 2723–2729 X.F. Lei, D. Ying, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, Met. Mater. Int., 2013, 22(9), p 2723–2729
31.
Zurück zum Zitat G.F. Xu, J. Qian, D. Xiao, Y. Deng, L.Y. Lu, and Z.M. Yin, Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Zn-Mg-Sc-Zr Alloy, Met. Mater. Int., 2016, 25(4), p 1249–1256 G.F. Xu, J. Qian, D. Xiao, Y. Deng, L.Y. Lu, and Z.M. Yin, Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Zn-Mg-Sc-Zr Alloy, Met. Mater. Int., 2016, 25(4), p 1249–1256
32.
Zurück zum Zitat X.Z. Li, V. Hansen, J. Gjønnes, and L.R. Wallenberg, HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys, Acta Mater., 1999, 47(9), p 2651–2659CrossRef X.Z. Li, V. Hansen, J. Gjønnes, and L.R. Wallenberg, HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys, Acta Mater., 1999, 47(9), p 2651–2659CrossRef
33.
Zurück zum Zitat J.K. Park and A.J. Ardell, Microstructures of the Commercial 7075 Al Alloy in the T651 and T7 Tempers, Metall. Trans. A, 1983, 14(10), p 1957–1965CrossRef J.K. Park and A.J. Ardell, Microstructures of the Commercial 7075 Al Alloy in the T651 and T7 Tempers, Metall. Trans. A, 1983, 14(10), p 1957–1965CrossRef
34.
Zurück zum Zitat R.N. Shenoy and J.M. Howe, A Differential Scanning Calorimetric Study of a Weldalite Type Alloy, Scr. Metall. Mater., 1995, 33(4), p 651–656CrossRef R.N. Shenoy and J.M. Howe, A Differential Scanning Calorimetric Study of a Weldalite Type Alloy, Scr. Metall. Mater., 1995, 33(4), p 651–656CrossRef
35.
Zurück zum Zitat S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie, and J.Z. Jiang, Porosity, Element Loss, and Strength Model on Softening Behavior of Hybrid Laser Arc Welded Al-Zn-Mg-Cu Alloy with Synchrotron Radiation Analysis, Weld. J., 2013, 92(3), p 64–71 S.C. Wu, X. Yu, R.Z. Zuo, W.H. Zhang, H.L. Xie, and J.Z. Jiang, Porosity, Element Loss, and Strength Model on Softening Behavior of Hybrid Laser Arc Welded Al-Zn-Mg-Cu Alloy with Synchrotron Radiation Analysis, Weld. J., 2013, 92(3), p 64–71
36.
Zurück zum Zitat P.K. Ghosh and V. Sharma, Chemical Composition and Microstructure in Pulsed MIG Welded Al-Zn-Mg Alloy, Mater. Trans., 1991, 32(2), p 145–150CrossRef P.K. Ghosh and V. Sharma, Chemical Composition and Microstructure in Pulsed MIG Welded Al-Zn-Mg Alloy, Mater. Trans., 1991, 32(2), p 145–150CrossRef
37.
Zurück zum Zitat A. Deschamps and Y. Brechet, Influence of Predeformation and Ageing of an Al-Zn-Mg Alloy—II. Modeling of precipitation Kinetics and Yield Stress, Acta Mater., 1999, 47(1), p 293–305CrossRef A. Deschamps and Y. Brechet, Influence of Predeformation and Ageing of an Al-Zn-Mg Alloy—II. Modeling of precipitation Kinetics and Yield Stress, Acta Mater., 1999, 47(1), p 293–305CrossRef
38.
Zurück zum Zitat R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Stat. Sol., 1970, 41(2), p 659–669CrossRef R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Stat. Sol., 1970, 41(2), p 659–669CrossRef
39.
Zurück zum Zitat J.D. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75–83CrossRef J.D. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75–83CrossRef
40.
Zurück zum Zitat P. Pan, J.J. Liu, and J. Ma, Influence of Welding Parameters of Pulse TIG on Weld Microstructure and Mechanical Property of Aluminum Alloys, J. Rocket Propuls., 2013, 39(1), p 52–57 P. Pan, J.J. Liu, and J. Ma, Influence of Welding Parameters of Pulse TIG on Weld Microstructure and Mechanical Property of Aluminum Alloys, J. Rocket Propuls., 2013, 39(1), p 52–57
Metadaten
Titel
Microstructural Investigation of VPPA–GMAW Welded 7A52 Aluminum Alloys
verfasst von
Haitao Hong
Yongquan Han
Qinghu Yao
Jiahui Tong
Publikationsdatum
20.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3450-3

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Engineering and Performance 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.