Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2016

19.08.2015 | RESEARCH PAPER

Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures

verfasst von: Wenjiong Chen, Shutian Liu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The geometric layout and physical properties of a viscoelastic damping material have a significant influence on the damping performance of a passive constrained layer damping (PCLD) structure. This paper presents a two-scale optimization method and aims to find the optimal microstructural configuration of the viscoelastic material (i.e., the optimal effective properties of the material) with maximum modal loss factors of the macrostructures. The modal loss factor is obtained by using the Modal Strain Energy (MSE) method. The material microstructure is assumed to be homogeneous in the macro-scale, i.e., the macrostructure is composed of periodic unit cells (PUC). In the optimization formulation, the relative densities are introduced as the design variables for the material microstructure design, based upon the idea of the Solid Isotropic Material with Penalization (SIMP) method of topology optimization. The modal loss factor of the structure is assigned as the objective function. All the sensitivities of the modal loss factor with respect to the design variables are derived analytically and the optimization problem is solved by Method of Moving Asymptote (MMA) method. Several examples of the design optimization of viscoelastic cellular materials are presented to demonstrate the validity of the method. The effectiveness of the design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to a cantilever beam with the PCLD treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Ajmi M (2004) Homogenization and topology optimization of constrained layer damping treatments. Ph.D. dissertation, University of Maryland Al-Ajmi M (2004) Homogenization and topology optimization of constrained layer damping treatments. Ph.D. dissertation, University of Maryland
Zurück zum Zitat Alam N, Asnani N (1984) Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J Sound Vib 97(4):597–614CrossRef Alam N, Asnani N (1984) Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J Sound Vib 97(4):597–614CrossRef
Zurück zum Zitat Bailey T, Ubbard J (1985) Distributed piezoelectric-polymer active vibration control of a cantilever beam. J Guid Control Dyn 8(5):605–611CrossRefMATH Bailey T, Ubbard J (1985) Distributed piezoelectric-polymer active vibration control of a cantilever beam. J Guid Control Dyn 8(5):605–611CrossRefMATH
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(10):635–654 Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(10):635–654
Zurück zum Zitat Challis V, Roberts A, Wilkins A (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14):4130–4146CrossRefMATH Challis V, Roberts A, Wilkins A (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14):4130–4146CrossRefMATH
Zurück zum Zitat Chen W, Liu S (2014) Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct Multidiscip Optim 50(2):287–296CrossRefMathSciNetMATH Chen W, Liu S (2014) Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct Multidiscip Optim 50(2):287–296CrossRefMathSciNetMATH
Zurück zum Zitat Chia C, Rongong J, Worden K (2009) Strategies for using cellular automata to locate constrained layer damping on vibrating structures. J Sound Vib 319(1):119–139CrossRef Chia C, Rongong J, Worden K (2009) Strategies for using cellular automata to locate constrained layer damping on vibrating structures. J Sound Vib 319(1):119–139CrossRef
Zurück zum Zitat Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597CrossRefMathSciNetMATH Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597CrossRefMathSciNetMATH
Zurück zum Zitat Fujii D, Chen B, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50(9):2031–2051CrossRefMathSciNetMATH Fujii D, Chen B, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50(9):2031–2051CrossRefMathSciNetMATH
Zurück zum Zitat Hassani B, Hinton E (1998) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69(6):707–717CrossRefMATH Hassani B, Hinton E (1998) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct 69(6):707–717CrossRefMATH
Zurück zum Zitat Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870CrossRef Huang X, Radman A, Xie Y (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870CrossRef
Zurück zum Zitat Huang X, Xie Y (2008) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606CrossRef Huang X, Xie Y (2008) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606CrossRef
Zurück zum Zitat Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46(1):51–67CrossRefMathSciNetMATH Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46(1):51–67CrossRefMathSciNetMATH
Zurück zum Zitat Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. Acoust Soc Am J 31:952CrossRef Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. Acoust Soc Am J 31:952CrossRef
Zurück zum Zitat Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332(12):2873–2883CrossRef Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332(12):2873–2883CrossRef
Zurück zum Zitat Lall A, Asnani N, Nakra B (1987) Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J Vib Acoust Stress Reliab Des 109(3):241–247CrossRef Lall A, Asnani N, Nakra B (1987) Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J Vib Acoust Stress Reliab Des 109(3):241–247CrossRef
Zurück zum Zitat Lee I-W, Jung G-H (1997) An efficient algebraic method for the computation of natural frequency and mode shape sensitivities—part I. Distinct natural frequencies. Comput Struct 62(3):429–435CrossRefMATH Lee I-W, Jung G-H (1997) An efficient algebraic method for the computation of natural frequency and mode shape sensitivities—part I. Distinct natural frequencies. Comput Struct 62(3):429–435CrossRefMATH
Zurück zum Zitat Li XB, Wang G, Wen JH, Wen XS (2012) Evolution of constrained layer damping using a modified cellular automata algorithm. Appl Mech Mater 226:129–132 Li XB, Wang G, Wen JH, Wen XS (2012) Evolution of constrained layer damping using a modified cellular automata algorithm. Appl Mech Mater 226:129–132
Zurück zum Zitat Li Z, Liang X (2007) Vibro-acoustic analysis and optimization of damping structure with response surface method. Mater Des 28(7):1999–2007CrossRef Li Z, Liang X (2007) Vibro-acoustic analysis and optimization of damping structure with response surface method. Mater Des 28(7):1999–2007CrossRef
Zurück zum Zitat Lifshitz J, Leibowitz M (1987) Optimal sandwich beam design for maximum viscoelastic damping. Int J Solids Struct 23(7):1027–1034CrossRefMATH Lifshitz J, Leibowitz M (1987) Optimal sandwich beam design for maximum viscoelastic damping. Int J Solids Struct 23(7):1027–1034CrossRefMATH
Zurück zum Zitat Ling Z, Ronglu X, Yi W, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using method of moving asymptote (MMA) approach. Shock Vib 18(2):221–244CrossRef Ling Z, Ronglu X, Yi W, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using method of moving asymptote (MMA) approach. Shock Vib 18(2):221–244CrossRef
Zurück zum Zitat Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef
Zurück zum Zitat Liu S, Cheng G, Gu Y, Zheng X (2002) Mapping method for sensitivity analysis of composite material property. Struct Multidiscip Optim 24(3):212–217CrossRef Liu S, Cheng G, Gu Y, Zheng X (2002) Mapping method for sensitivity analysis of composite material property. Struct Multidiscip Optim 24(3):212–217CrossRef
Zurück zum Zitat Mantena PR, Gibson RF, Hwang SJ (1991) Optimal constrained viscoelastic tape lengths for maximizing dampingin laminated composites. AIAA J 29(10):1678–1685CrossRef Mantena PR, Gibson RF, Hwang SJ (1991) Optimal constrained viscoelastic tape lengths for maximizing dampingin laminated composites. AIAA J 29(10):1678–1685CrossRef
Zurück zum Zitat Marcelin J-L, Trompette P, Smati A (1992) Optimal constrained layer damping with partial coverage. Finite Elem Anal Des 12(3):273–280CrossRefMATH Marcelin J-L, Trompette P, Smati A (1992) Optimal constrained layer damping with partial coverage. Finite Elem Anal Des 12(3):273–280CrossRefMATH
Zurück zum Zitat Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef
Zurück zum Zitat Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45(3):210–226CrossRefMathSciNet Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45(3):210–226CrossRefMathSciNet
Zurück zum Zitat Radman A, Huang X, Xie Y (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348CrossRefMathSciNet Radman A, Huang X, Xie Y (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348CrossRefMathSciNet
Zurück zum Zitat Rao MD (2003) Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262(3):457–474CrossRef Rao MD (2003) Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262(3):457–474CrossRef
Zurück zum Zitat Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef
Zurück zum Zitat Shen I (1994) Hybrid damping through intelligent constrained layer treatments. J Vib Acoust 116(3):341–349CrossRef Shen I (1994) Hybrid damping through intelligent constrained layer treatments. J Vib Acoust 116(3):341–349CrossRef
Zurück zum Zitat Su W, Liu S (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidiscip Optim 42(2):243–254CrossRef Su W, Liu S (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidiscip Optim 42(2):243–254CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMathSciNetMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMathSciNetMATH
Zurück zum Zitat Yi Y-M, Park S-H, Youn S-K (1998) Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int J Solids Struct 35(17):2039–2055CrossRefMathSciNetMATH Yi Y-M, Park S-H, Youn S-K (1998) Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int J Solids Struct 35(17):2039–2055CrossRefMathSciNetMATH
Zurück zum Zitat Yi Y-M, Park S-H, Youn S-K (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37(35):4791–4810CrossRefMATH Yi Y-M, Park S-H, Youn S-K (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37(35):4791–4810CrossRefMATH
Zurück zum Zitat Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011CrossRefMATH Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011CrossRefMATH
Zurück zum Zitat Zheng H, Cai C, Pau G, Liu G (2005) Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J Sound Vib 279(3):739–756CrossRef Zheng H, Cai C, Pau G, Liu G (2005) Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J Sound Vib 279(3):739–756CrossRef
Zurück zum Zitat Zheng H, Cai C, Tan X (2004) Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput Struct 82(29):2493–2507CrossRef Zheng H, Cai C, Tan X (2004) Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput Struct 82(29):2493–2507CrossRef
Metadaten
Titel
Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures
verfasst von
Wenjiong Chen
Shutian Liu
Publikationsdatum
19.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1305-1

Weitere Artikel der Ausgabe 1/2016

Structural and Multidisciplinary Optimization 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.