Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2016

19.08.2016

Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

verfasst von: Kun Liu, Yajiang Li, Juan Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (−196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (−196 °C).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Yıldızlı, Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions, Mater. Des., 2015, 77, p 83–94CrossRef K. Yıldızlı, Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions, Mater. Des., 2015, 77, p 83–94CrossRef
2.
Zurück zum Zitat S. Kumar and A.S. Shahi, On the influence of welding stainless steel on microstructural development and mechanical performance, Mater. Manuf. Processes, 2014, 29, p 894–902CrossRef S. Kumar and A.S. Shahi, On the influence of welding stainless steel on microstructural development and mechanical performance, Mater. Manuf. Processes, 2014, 29, p 894–902CrossRef
3.
Zurück zum Zitat Y. Cui, C.D. Lundin, and V. Hariharan, Mechanical behavior of austenitic stainless steel weld metals with microfissures, J. Mater. Process. Technol., 2006, 171, p 150–155CrossRef Y. Cui, C.D. Lundin, and V. Hariharan, Mechanical behavior of austenitic stainless steel weld metals with microfissures, J. Mater. Process. Technol., 2006, 171, p 150–155CrossRef
4.
Zurück zum Zitat R. Unnikrishnan, K.S.N.S. Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, and S.G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Mater. Charact., 2014, 93, p 10–23CrossRef R. Unnikrishnan, K.S.N.S. Idury, T.P. Ismail, A. Bhadauria, S.K. Shekhawat, R.K. Khatirkar, and S.G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Mater. Charact., 2014, 93, p 10–23CrossRef
5.
Zurück zum Zitat A. Bhattacharya and R. Kumar, Dissimilar joining between austenitic and duplex stainless steel in double-shielded GMAW: a comparative study, Mater. Manuf. Processes, 2016, 31, p 300–310CrossRef A. Bhattacharya and R. Kumar, Dissimilar joining between austenitic and duplex stainless steel in double-shielded GMAW: a comparative study, Mater. Manuf. Processes, 2016, 31, p 300–310CrossRef
6.
Zurück zum Zitat R. Kumar, A. Bhattacharya, and T.K. Bera, Mechanical and metallurgical studies in double shielded GMAW of dissimilar stainless steels, Mater. Manuf. Processes, 2015, 30, p 1146–1153CrossRef R. Kumar, A. Bhattacharya, and T.K. Bera, Mechanical and metallurgical studies in double shielded GMAW of dissimilar stainless steels, Mater. Manuf. Processes, 2015, 30, p 1146–1153CrossRef
7.
Zurück zum Zitat Y. Li, S. Hu, and J. Shen, The effect of peak power and pulse duration for dissimilar welding of brass to stainless steel, Mater. Manuf. Processes, 2014, 29, p 922–927CrossRef Y. Li, S. Hu, and J. Shen, The effect of peak power and pulse duration for dissimilar welding of brass to stainless steel, Mater. Manuf. Processes, 2014, 29, p 922–927CrossRef
8.
Zurück zum Zitat G.R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel, Mater. Des., 2014, 55, p 905–911CrossRef G.R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel, Mater. Des., 2014, 55, p 905–911CrossRef
9.
Zurück zum Zitat Y. Li, S. Hu, J. Shen, and B. Hu, Dissimilar welding of H62 brass-316L stainless steel using continuous-wave Nd: YAG laser, Mater. Manuf. Processes, 2014, 29, p 916–921CrossRef Y. Li, S. Hu, J. Shen, and B. Hu, Dissimilar welding of H62 brass-316L stainless steel using continuous-wave Nd: YAG laser, Mater. Manuf. Processes, 2014, 29, p 916–921CrossRef
10.
Zurück zum Zitat S. Tathgir and A. Bhattacharya, Activated-TIG welding of different steels: influence of various flux and shielding gas, Mater. Manuf. Processes, 2016, 31, p 335–342CrossRef S. Tathgir and A. Bhattacharya, Activated-TIG welding of different steels: influence of various flux and shielding gas, Mater. Manuf. Processes, 2016, 31, p 335–342CrossRef
11.
Zurück zum Zitat P. Sathiya, M.K. Mishra, and B. Shanmugarajan, Effect of shielding gases on microstructure and mechanical properties of super austenitic stainless steel by hybrid welding, Mater. Des., 2012, 33, p 203–212CrossRef P. Sathiya, M.K. Mishra, and B. Shanmugarajan, Effect of shielding gases on microstructure and mechanical properties of super austenitic stainless steel by hybrid welding, Mater. Des., 2012, 33, p 203–212CrossRef
12.
Zurück zum Zitat K.D. Ramkumar, D. Mishra, B.G. Raj, M. Vignesh, G. Thiruvengatam, S. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A.M. Rabel, Effect of optimal weld parameters in the microstructure and mechanical properties of autogeneous gas tungsten arc weldments of super-duplex stainless steel UNS S32750, Mater. Des., 2015, 66, p 356–365CrossRef K.D. Ramkumar, D. Mishra, B.G. Raj, M. Vignesh, G. Thiruvengatam, S. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A.M. Rabel, Effect of optimal weld parameters in the microstructure and mechanical properties of autogeneous gas tungsten arc weldments of super-duplex stainless steel UNS S32750, Mater. Des., 2015, 66, p 356–365CrossRef
13.
Zurück zum Zitat Y. Feng, Z. Luo, Z. Liu, Y. Li, Y. Luo, and Y. Huang, Keyhole gas tungsten arc welding of AISI, 316L stainless steel, Mater. Des., 2015, 85, p 24–31 Y. Feng, Z. Luo, Z. Liu, Y. Li, Y. Luo, and Y. Huang, Keyhole gas tungsten arc welding of AISI, 316L stainless steel, Mater. Des., 2015, 85, p 24–31
14.
Zurück zum Zitat E. Zumelzu, J. Sepúlveda, and M. Ibarra, Influence of microstructure on the mechanical behaviour of welded 316 L SS joints, J. Mater. Process. Technol., 1999, 94, p 36–40CrossRef E. Zumelzu, J. Sepúlveda, and M. Ibarra, Influence of microstructure on the mechanical behaviour of welded 316 L SS joints, J. Mater. Process. Technol., 1999, 94, p 36–40CrossRef
15.
Zurück zum Zitat A. Durgutlu, Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel, Mater. Des., 2004, 25, p 19–23CrossRef A. Durgutlu, Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel, Mater. Des., 2004, 25, p 19–23CrossRef
16.
Zurück zum Zitat V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng., A, 2014, 607, p 138–144CrossRef V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng., A, 2014, 607, p 138–144CrossRef
17.
Zurück zum Zitat A. Pascu, E.M. Stanciu, I. Voiculescu, M.H. Ţierean, I.C. Roată, and J.L. Ocaña, Chemical and mechanical characterization of AISI, 304 and AISI, 1010 laser welding, Mater. Manuf. Processes, 2016, 31, p 311–318CrossRef A. Pascu, E.M. Stanciu, I. Voiculescu, M.H. Ţierean, I.C. Roată, and J.L. Ocaña, Chemical and mechanical characterization of AISI, 304 and AISI, 1010 laser welding, Mater. Manuf. Processes, 2016, 31, p 311–318CrossRef
18.
Zurück zum Zitat K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, and P. Vasantharaja, Thermo-mechanical analysis of TIG welding of AISI, 316LN stainless steel, Mater. Manuf. Processes, 2014, 29, p 903–909CrossRef K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, and P. Vasantharaja, Thermo-mechanical analysis of TIG welding of AISI, 316LN stainless steel, Mater. Manuf. Processes, 2014, 29, p 903–909CrossRef
19.
Zurück zum Zitat E. Taban, E. Kaluc, and A. Dhooge, Hybrid (plasma + gas tungsten arc) weldability of modified 12% Cr ferritic stainless steel, Mater. Des., 2009, 30, p 4236–4242CrossRef E. Taban, E. Kaluc, and A. Dhooge, Hybrid (plasma + gas tungsten arc) weldability of modified 12% Cr ferritic stainless steel, Mater. Des., 2009, 30, p 4236–4242CrossRef
20.
Zurück zum Zitat J.N. DuPont and A.R. Marder, Thermal efficiency of arc welding processes, Weld. J., 1995, 74, p 406–416 J.N. DuPont and A.R. Marder, Thermal efficiency of arc welding processes, Weld. J., 1995, 74, p 406–416
21.
Zurück zum Zitat M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett., 2007, 61, p 2343–2346CrossRef M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett., 2007, 61, p 2343–2346CrossRef
22.
Zurück zum Zitat W.S. Lee and C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Mater. Sci. Eng. A, 2001, 308, p 124–135CrossRef W.S. Lee and C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Mater. Sci. Eng. A, 2001, 308, p 124–135CrossRef
23.
Zurück zum Zitat H. Ma, G. Qin, P. Geng, F. Li, B. Fu, and X. Meng, Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding, Mater. Des., 2015, 86, p 587–597 H. Ma, G. Qin, P. Geng, F. Li, B. Fu, and X. Meng, Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding, Mater. Des., 2015, 86, p 587–597
24.
Zurück zum Zitat M. Gao, X. Zeng, J. Yan, and Q. Hu, Microstructure characteristics of laser–MIG hybrid welded mild steel, Appl. Surf. Sci., 2008, 254, p 5715–5721CrossRef M. Gao, X. Zeng, J. Yan, and Q. Hu, Microstructure characteristics of laser–MIG hybrid welded mild steel, Appl. Surf. Sci., 2008, 254, p 5715–5721CrossRef
25.
Zurück zum Zitat T. Teker, The effect of austenitic interlayer on microstructure and mechanical behaviors in keyhole plasma transfer arc welding of ferritic stainless steel couple, Int. J. Adv. Manuf. Technol., 2013, 69, p 1833–1840CrossRef T. Teker, The effect of austenitic interlayer on microstructure and mechanical behaviors in keyhole plasma transfer arc welding of ferritic stainless steel couple, Int. J. Adv. Manuf. Technol., 2013, 69, p 1833–1840CrossRef
26.
Zurück zum Zitat T. Teker and N. Ozdemir, Weldability and joining characteristics of AISI, 430/AISI, 1040 steels using keyhole plasma arc welding, Int. J. Adv. Manuf. Technol., 2012, 63, p 117–128CrossRef T. Teker and N. Ozdemir, Weldability and joining characteristics of AISI, 430/AISI, 1040 steels using keyhole plasma arc welding, Int. J. Adv. Manuf. Technol., 2012, 63, p 117–128CrossRef
27.
Zurück zum Zitat A. Ureña, E. Otero, M.V. Utrilla, and C.J. Múnez, Weldability of a 2205 duplex stainless steel using plasma arc welding, J. Mater. Process. Technol., 2007, 182, p 624–631CrossRef A. Ureña, E. Otero, M.V. Utrilla, and C.J. Múnez, Weldability of a 2205 duplex stainless steel using plasma arc welding, J. Mater. Process. Technol., 2007, 182, p 624–631CrossRef
28.
Zurück zum Zitat C.Y. Cui, X.G. Cui, X.D. Ren, T.T. Liu, J.D. Hu, and Y.M. Wang, Microstructure and microhardness of fiber laser butt welded joint of stainless steel plates, Mater. Des., 2013, 49, p 761–765CrossRef C.Y. Cui, X.G. Cui, X.D. Ren, T.T. Liu, J.D. Hu, and Y.M. Wang, Microstructure and microhardness of fiber laser butt welded joint of stainless steel plates, Mater. Des., 2013, 49, p 761–765CrossRef
29.
Zurück zum Zitat P. Zhang, S.X. Li, and Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A, 2011, 529, p 62–73CrossRef P. Zhang, S.X. Li, and Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A, 2011, 529, p 62–73CrossRef
30.
Zurück zum Zitat I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, and U. Erb, Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials, Mater. Sci. Eng. A, 2008, 491, p 412–419CrossRef I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, and U. Erb, Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials, Mater. Sci. Eng. A, 2008, 491, p 412–419CrossRef
31.
Zurück zum Zitat S.H. Hashemi, Strength-hardness statistical correlation in API, X65 steel, Mater. Sci. Eng. A, 2011, 528, p 1648–1655CrossRef S.H. Hashemi, Strength-hardness statistical correlation in API, X65 steel, Mater. Sci. Eng. A, 2011, 528, p 1648–1655CrossRef
32.
Zurück zum Zitat P. Sathiya, S. Aravindan, and A.N. Haq, Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel, Int. J. Adv. Manuf. Technol., 2007, 31, p 1076–1082CrossRef P. Sathiya, S. Aravindan, and A.N. Haq, Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel, Int. J. Adv. Manuf. Technol., 2007, 31, p 1076–1082CrossRef
33.
Zurück zum Zitat H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, and S. Lee, Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4 C–(22–26) Mn steels, Acta Mater., 2015, 87, p 332–343CrossRef H. Kim, Y. Ha, K.H. Kwon, M. Kang, N.J. Kim, and S. Lee, Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4 C–(22–26) Mn steels, Acta Mater., 2015, 87, p 332–343CrossRef
34.
Zurück zum Zitat K. Chandra, V. Kain, V. Bhutani, V.S. Raja, R. Tewari, G.K. Dey, and J.K. Chakravartty, Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties, Mater. Sci. Eng. A, 2012, 534, p 163–175CrossRef K. Chandra, V. Kain, V. Bhutani, V.S. Raja, R. Tewari, G.K. Dey, and J.K. Chakravartty, Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties, Mater. Sci. Eng. A, 2012, 534, p 163–175CrossRef
35.
Zurück zum Zitat J.H. Kim, S.W. Choi, D.H. Park, and J.M. Lee, Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: effect of low temperatures, Mater. Des., 2015, 65, p 914–922CrossRef J.H. Kim, S.W. Choi, D.H. Park, and J.M. Lee, Charpy impact properties of stainless steel weldment in liquefied natural gas pipelines: effect of low temperatures, Mater. Des., 2015, 65, p 914–922CrossRef
Metadaten
Titel
Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding
verfasst von
Kun Liu
Yajiang Li
Juan Wang
Publikationsdatum
19.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2288-9

Weitere Artikel der Ausgabe 10/2016

Journal of Materials Engineering and Performance 10/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.