Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2020

01.01.2020 | STRENGTH AND PLASTICITY

Microstructure and Mechanical Properties of 1050 Aluminum after the Combined Processes of Constrained Groove Pressing and Cold Rolling

verfasst von: K. Hajizadeh, S. Ejtemaei, B. Eghbali, K. J. Kurzydlowski

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work compares the microstructure and mechanical properties of 1050 aluminum subjected to constrained groove pressing (CGP) combined with cold rolling. Transmission electron microscopy observations showed that four passes of CGP refines the grain size to ~1.4 μm. Combining the CGP with cold rolling (rolling at a room temperature) brings about further reduction of the grain size and a significant improvement of the mechanical properties. It also changes the tensile deformation behavior of 1050 aluminum. The stress-strain curves of further cold rolled samples displayed a yield point phenomenon. A combination of high strength exceeding 300 MPa and good elongation to failure approaching 20% was obtained for 1050 aluminum after processing by 4 passes of CGP combined with subsequent 80% cold rolling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).CrossRef R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).CrossRef
2.
Zurück zum Zitat R. W. Armstrong, “60 years of Hall–Petch: Past to present nano-scale connections,” Mater. Trans. 55, 2–12 (2014).CrossRef R. W. Armstrong, “60 years of Hall–Petch: Past to present nano-scale connections,” Mater. Trans. 55, 2–12 (2014).CrossRef
3.
Zurück zum Zitat R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).CrossRef R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).CrossRef
4.
Zurück zum Zitat V. V. Popov, E. N. Popova, A. V. Stolbovsky, and R. M. Falahutdinov, “Evolution of the structure of Cu–1% Sn bronze under high pressure torsion and subsequent annealing,” Phys. Met. Metallogr. 119, 358–367 (2018).CrossRef V. V. Popov, E. N. Popova, A. V. Stolbovsky, and R. M. Falahutdinov, “Evolution of the structure of Cu–1% Sn bronze under high pressure torsion and subsequent annealing,” Phys. Met. Metallogr. 119, 358–367 (2018).CrossRef
5.
Zurück zum Zitat O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef
6.
Zurück zum Zitat Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, “Useful properties of twist extrusion,” Mater. Sci. Eng., A 503, 14–17 (2009).CrossRef Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, “Useful properties of twist extrusion,” Mater. Sci. Eng., A 503, 14–17 (2009).CrossRef
7.
Zurück zum Zitat W. Pachla, M. Kulczyk, S. Przybysz, and J. Skiba, “Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2,” J. Mater. Process. Technol. 221, 255–268 (2015).CrossRef W. Pachla, M. Kulczyk, S. Przybysz, and J. Skiba, “Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2,” J. Mater. Process. Technol. 221, 255–268 (2015).CrossRef
8.
Zurück zum Zitat Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process,” Acta Mater. 47, 579– 583 (1999).CrossRef Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process,” Acta Mater. 47, 579– 583 (1999).CrossRef
9.
Zurück zum Zitat Y. H. Ji and J. J. Park, “Development of severe plastic deformation by various asymmetric rolling processes,” Mater. Sci. Eng., A 499, 14–17 (2009).CrossRef Y. H. Ji and J. J. Park, “Development of severe plastic deformation by various asymmetric rolling processes,” Mater. Sci. Eng., A 499, 14–17 (2009).CrossRef
10.
Zurück zum Zitat J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).CrossRef J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).CrossRef
11.
Zurück zum Zitat D. H. Shin, J. J. Park, Y. S. Kim, and K. T. Park, “Constrained groove pressing and its application to grain refinement of aluminum,” Mater. Sci. Eng., A 328, 98–103 (2002).CrossRef D. H. Shin, J. J. Park, Y. S. Kim, and K. T. Park, “Constrained groove pressing and its application to grain refinement of aluminum,” Mater. Sci. Eng., A 328, 98–103 (2002).CrossRef
12.
Zurück zum Zitat J. Lee and J. Park, “Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement,” J. Mater. Process. Technol. 130–131, 208–213 (2002).CrossRef J. Lee and J. Park, “Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement,” J. Mater. Process. Technol. 130–131, 208–213 (2002).CrossRef
13.
Zurück zum Zitat H. Yu, K. Tieu, and C. Lu, “Advanced rolling technologies for producing ultrafine-grain/nanostructured alloys,” Procedia Eng. 81, 96–101 (2014).CrossRef H. Yu, K. Tieu, and C. Lu, “Advanced rolling technologies for producing ultrafine-grain/nanostructured alloys,” Procedia Eng. 81, 96–101 (2014).CrossRef
14.
Zurück zum Zitat A.K. Gupta, T.S. Maddukuri, and S.K. Singh, “Constrained groove pressing for sheet metal processing,” Prog. Mater. Sci. 84, 403–462 (2016).CrossRef A.K. Gupta, T.S. Maddukuri, and S.K. Singh, “Constrained groove pressing for sheet metal processing,” Prog. Mater. Sci. 84, 403–462 (2016).CrossRef
15.
Zurück zum Zitat S. Morattab, K. Ranjbar, and M. Reihanian, “On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing,” Mater. Sci. Eng., A 528, 6912–6918 (2011).CrossRef S. Morattab, K. Ranjbar, and M. Reihanian, “On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing,” Mater. Sci. Eng., A 528, 6912–6918 (2011).CrossRef
16.
Zurück zum Zitat F. Khodabakhshi, M. Kazeminezhad, and A. Kokabi, “Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties,” Mater. Sci. Eng., A 527, 4043–4049 (2010).CrossRef F. Khodabakhshi, M. Kazeminezhad, and A. Kokabi, “Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties,” Mater. Sci. Eng., A 527, 4043–4049 (2010).CrossRef
17.
Zurück zum Zitat E. Hosseini and M. Kazeminezhad, “RETRACTED: Nanostructure and mechanical properties of 0–7 strained aluminum by CGP: XRD, TEM and tensile test,” Mater. Sci. Eng., A 526, 219–224 (2009).CrossRef E. Hosseini and M. Kazeminezhad, “RETRACTED: Nanostructure and mechanical properties of 0–7 strained aluminum by CGP: XRD, TEM and tensile test,” Mater. Sci. Eng., A 526, 219–224 (2009).CrossRef
18.
Zurück zum Zitat K. Peng, X. Mou, J. Zeng, L. L Shaw, and K. W. Qian, “Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing,” Comput. Mater. Sci. 50, 1526–1532 (2011).CrossRef K. Peng, X. Mou, J. Zeng, L. L Shaw, and K. W. Qian, “Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing,” Comput. Mater. Sci. 50, 1526–1532 (2011).CrossRef
19.
Zurück zum Zitat K. Hajizadeh, S. Ejtemaei, and B. Eghbali, “Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing,” J. Appl. Phys. 504, 123–132 (2017). K. Hajizadeh, S. Ejtemaei, and B. Eghbali, “Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing,” J. Appl. Phys. 504, 123–132 (2017).
20.
Zurück zum Zitat S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminum sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).CrossRef S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminum sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).CrossRef
21.
Zurück zum Zitat S. S. Satheesh Kumar and T. Raghu, “Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets,” J. Mater. Process. Technol. 213, 214–220 (2013).CrossRef S. S. Satheesh Kumar and T. Raghu, “Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets,” J. Mater. Process. Technol. 213, 214–220 (2013).CrossRef
22.
Zurück zum Zitat N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Rabb, and R. Z. Valiev, “Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes,” Mater. Sci. Eng., A 554, 105–115 (2012).CrossRef N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Rabb, and R. Z. Valiev, “Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes,” Mater. Sci. Eng., A 554, 105–115 (2012).CrossRef
23.
Zurück zum Zitat E. A. El-Danaf, M. S. Soliman, and A. A. Almajid, “EBSD investigation of the microstructure and microtexture evolution of 1050 aluminum cross deformed from ECAP to plane strain compression,” J. Mater. Sci. 46, 3291–3308 (2011).CrossRef E. A. El-Danaf, M. S. Soliman, and A. A. Almajid, “EBSD investigation of the microstructure and microtexture evolution of 1050 aluminum cross deformed from ECAP to plane strain compression,” J. Mater. Sci. 46, 3291–3308 (2011).CrossRef
24.
Zurück zum Zitat S. S. Hazra, A. A. Gazder, A. Carman, and E. V. Pereloma, “Effect of cold rolling on as–ECAP interstitial free steel,” Metall. Mater. Trans. A 42, 1334–1348 (2011).CrossRef S. S. Hazra, A. A. Gazder, A. Carman, and E. V. Pereloma, “Effect of cold rolling on as–ECAP interstitial free steel,” Metall. Mater. Trans. A 42, 1334–1348 (2011).CrossRef
25.
Zurück zum Zitat V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling,” Mater. Sci. Eng., A. 343, 43–50 (2003).CrossRef V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling,” Mater. Sci. Eng., A. 343, 43–50 (2003).CrossRef
26.
Zurück zum Zitat K. Hajizadeh and B. Eghbali, “Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium,” Met. Mater. Int. 20, 343–350 (2014).CrossRef K. Hajizadeh and B. Eghbali, “Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium,” Met. Mater. Int. 20, 343–350 (2014).CrossRef
27.
Zurück zum Zitat V. I. Zel’dovich, E. V. Shorokhov, S. V. Dobatkin, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, “Structure and mechanical properties of titanium subjected to high-rate channel angular pressing and deformation by rolling,” Phys. Met. Metallogr. 111, 421–429 (2011).CrossRef V. I. Zel’dovich, E. V. Shorokhov, S. V. Dobatkin, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, “Structure and mechanical properties of titanium subjected to high-rate channel angular pressing and deformation by rolling,” Phys. Met. Metallogr. 111, 421–429 (2011).CrossRef
28.
Zurück zum Zitat K. X. Wei, W. We, F. Wang, Q. B. Du, I. V. Alexandrov, and J. Hu, “Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5% Cr alloy processed by severe plastic deformation,” Mater. Sci. Eng., A 528, 1478–1484 (2011).CrossRef K. X. Wei, W. We, F. Wang, Q. B. Du, I. V. Alexandrov, and J. Hu, “Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5% Cr alloy processed by severe plastic deformation,” Mater. Sci. Eng., A 528, 1478–1484 (2011).CrossRef
29.
Zurück zum Zitat M. Cabibbo, E. Evangelista, and C. Scalabroni, “EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing,” Micron 36, 401–414 (2005).CrossRef M. Cabibbo, E. Evangelista, and C. Scalabroni, “EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angular-pressing,” Micron 36, 401–414 (2005).CrossRef
30.
Zurück zum Zitat R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Annu. Rev. Mater. Res. 40, 319–343 (2010).CrossRef R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Annu. Rev. Mater. Res. 40, 319–343 (2010).CrossRef
31.
Zurück zum Zitat P. L. Sun, E. K. Cerreta, G. T. Gray, and J. F. Bingert, “The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum,” Metall. Mater. Trans. A 37, 2983–2994 (2006).CrossRef P. L. Sun, E. K. Cerreta, G. T. Gray, and J. F. Bingert, “The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum,” Metall. Mater. Trans. A 37, 2983–2994 (2006).CrossRef
32.
Zurück zum Zitat E. Bruder, “Mechanical Properties of ARMCO® iron after large and severe plastic deformation — Application potential for precursors to ultrafine grained microstructures,” Metals 8, 191–203 (2018).CrossRef E. Bruder, “Mechanical Properties of ARMCO® iron after large and severe plastic deformation — Application potential for precursors to ultrafine grained microstructures,” Metals 8, 191–203 (2018).CrossRef
33.
Zurück zum Zitat E. O. Hall, Yield Point Phenomena in Metals and Alloys (Plenum, New York, 1970), pp. 16–23 and 171–200. E. O. Hall, Yield Point Phenomena in Metals and Alloys (Plenum, New York, 1970), pp. 16–23 and 171–200.
34.
Zurück zum Zitat B. J. Brindley and P. J. Worthington, “Yield-point phenomena in substitutional alloys,” Met. Mater. Metall. Rev. 4, 101–114 (1970).CrossRef B. J. Brindley and P. J. Worthington, “Yield-point phenomena in substitutional alloys,” Met. Mater. Metall. Rev. 4, 101–114 (1970).CrossRef
35.
Zurück zum Zitat C. Y. Yu, P. W. Kao, and C. P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum,” Acta Mater. 53, 4019–4028 (2005).CrossRef C. Y. Yu, P. W. Kao, and C. P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum,” Acta Mater. 53, 4019–4028 (2005).CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of 1050 Aluminum after the Combined Processes of Constrained Groove Pressing and Cold Rolling
verfasst von
K. Hajizadeh
S. Ejtemaei
B. Eghbali
K. J. Kurzydlowski
Publikationsdatum
01.01.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20010081

Weitere Artikel der Ausgabe 1/2020

Physics of Metals and Metallography 1/2020 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Atom Probe Tomography of the VV751P Nickel-Based Superalloy