Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2017

26.01.2017

Microstructure and Mechanical Properties of As-cast 42CrMo Ring Blank During Hot Rolling and Subsequent Quenching and Tempering

verfasst von: Fangcheng Qin, Yongtang Li, Huiping Qi, Xiaojian Wei

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot rolling of as-cast 42CrMo ring blank and its subsequent quenching and tempering were conducted based on the casting-rolling compound forming technique. The effects of feed rate and tempering temperature on the microstructure were studied by optical microscopy and scanning electron microscopy. The mechanical properties of the rolled rings were examined. The results show that when the feed rate of the idle roll increases, the degree of grain refinement becomes slightly smaller and the average grain size is approximately 44 μm through the whole thickness of the rolled ring. The microstructure is inhomogeneous near the center-layer and minimum spread region, which is characterized by a small amount of irregular and coarse grain. The strength and hardness of the hot-rolled rings are high, and the plasticity and toughness are relatively low. The depth and diameter of the dimples in the fracture of the ring fabricated with a low feed rate are larger than those of the ring fabricated with a high feed rate. The carbide particles cannot be observed in the rolled rings after the rings are quenched and tempered at 803 K, but the fine and dispersed particles are precipitated by tempering at 863 K. As a result, the mechanical properties are significantly improved and satisfy the technical demands after quenching and tempering. The fractures of both tensile and impact specimens are characterized by regular and fine dimples at a higher tempering temperature, which indicates that a dimple fracture and an excellent combination of strength, plasticity and toughness are obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499, p 88–92CrossRef Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499, p 88–92CrossRef
2.
Zurück zum Zitat D. Chaouch, S. Guessasma, and A. Sadok, Finite Element Simulation Coupled to Optimisation Stochastic Process to Asses the Effect of Heat Treatment on the Mechanical Properties of 42CrMo4 Steel, Mater. Des., 2012, 34, p 679–684CrossRef D. Chaouch, S. Guessasma, and A. Sadok, Finite Element Simulation Coupled to Optimisation Stochastic Process to Asses the Effect of Heat Treatment on the Mechanical Properties of 42CrMo4 Steel, Mater. Des., 2012, 34, p 679–684CrossRef
3.
Zurück zum Zitat S.I. Kim, Y. Lee, and S.M. Byon, Study on Constitutive Relation of AISI, 4140 Steel Subject to Large Strain at Elevated Temperatures, J. Mater. Process. Technol., 2003, 140, p 84–89CrossRef S.I. Kim, Y. Lee, and S.M. Byon, Study on Constitutive Relation of AISI, 4140 Steel Subject to Large Strain at Elevated Temperatures, J. Mater. Process. Technol., 2003, 140, p 84–89CrossRef
4.
Zurück zum Zitat T.D. Kil, J.M. Lee, and Y.H. Moon, Quantitative Formability Estimation of Ring Rolling Process by Using Deformation Processing Map, J. Mater. Process. Technol., 2015, 220, p 224–230CrossRef T.D. Kil, J.M. Lee, and Y.H. Moon, Quantitative Formability Estimation of Ring Rolling Process by Using Deformation Processing Map, J. Mater. Process. Technol., 2015, 220, p 224–230CrossRef
5.
Zurück zum Zitat H. Yang, M. Wang, L.G. Guo, and Z.C. Sun, 3D Coupled Thermo-Mechanical FE Modeling of Blank Size Effects on the Uniformity of Strain and Temperature Distributions During Hot Rolling of Titanium Alloy Large Rings, Comput. Mater. Sci., 2008, 44, p 611–621CrossRef H. Yang, M. Wang, L.G. Guo, and Z.C. Sun, 3D Coupled Thermo-Mechanical FE Modeling of Blank Size Effects on the Uniformity of Strain and Temperature Distributions During Hot Rolling of Titanium Alloy Large Rings, Comput. Mater. Sci., 2008, 44, p 611–621CrossRef
6.
Zurück zum Zitat C. Wang, H.J.M. Geijselaers, E. Omerspahic, V. Recina, and A.H. van den Boogaard, Influence of Ring Growth Rate on Damage Development in Hot Ring Rolling, J. Mater. Process. Technol., 2016, 227, p 268–280CrossRef C. Wang, H.J.M. Geijselaers, E. Omerspahic, V. Recina, and A.H. van den Boogaard, Influence of Ring Growth Rate on Damage Development in Hot Ring Rolling, J. Mater. Process. Technol., 2016, 227, p 268–280CrossRef
7.
Zurück zum Zitat S. Zhu, H. Yang, L.G. Guo, and R.J. Gu, Investigation of Deformation Degree and Initial Forming Temperature Dependences of Microstructure in Hot Ring Rolling of TA15 Titanium Alloy by Multi-scale Simulations, Comput. Mater. Sci., 2012, 65, p 221–229CrossRef S. Zhu, H. Yang, L.G. Guo, and R.J. Gu, Investigation of Deformation Degree and Initial Forming Temperature Dependences of Microstructure in Hot Ring Rolling of TA15 Titanium Alloy by Multi-scale Simulations, Comput. Mater. Sci., 2012, 65, p 221–229CrossRef
8.
Zurück zum Zitat X.H. Han, L. Hua, G.H. Zhou, B.H. Lu, and X.K. Wang, FE Simulation and Experimental Research on Cylindrical Ring Rolling, J. Mater. Process. Technol., 2014, 214, p 1245–1258CrossRef X.H. Han, L. Hua, G.H. Zhou, B.H. Lu, and X.K. Wang, FE Simulation and Experimental Research on Cylindrical Ring Rolling, J. Mater. Process. Technol., 2014, 214, p 1245–1258CrossRef
9.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef
10.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel during Compression at Elevated Temperatures, Mater. Lett., 2008, 62, p 2132–2135CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel during Compression at Elevated Temperatures, Mater. Lett., 2008, 62, p 2132–2135CrossRef
11.
Zurück zum Zitat Y.C. Lin and G. Liu, Effects of Strain on the Workability of A High Strength Low Alloy Steel in Hot Compression, Mater. Sci. Eng. A, 2009, 523(1–2), p 139–144CrossRef Y.C. Lin and G. Liu, Effects of Strain on the Workability of A High Strength Low Alloy Steel in Hot Compression, Mater. Sci. Eng. A, 2009, 523(1–2), p 139–144CrossRef
12.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30, p 908–913CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30, p 908–913CrossRef
13.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Study of Metadynamic Recrystallization Behaviors in A Low Alloy Steel, J. Mater. Process. Technol., 2009, 209, p 2477–2482CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Study of Metadynamic Recrystallization Behaviors in A Low Alloy Steel, J. Mater. Process. Technol., 2009, 209, p 2477–2482CrossRef
14.
Zurück zum Zitat Y.T. Li, L. Ju, H.P. Qi, F. Zhang, G.Z. Cheng, and M.L. Wang, Technology and Experiments of 42CrMo Bearing Ring Forming Based on Casting Ring Blank, Chin. J. Mech. Eng., 2014, 27(2), p 417–427 Y.T. Li, L. Ju, H.P. Qi, F. Zhang, G.Z. Cheng, and M.L. Wang, Technology and Experiments of 42CrMo Bearing Ring Forming Based on Casting Ring Blank, Chin. J. Mech. Eng., 2014, 27(2), p 417–427
15.
Zurück zum Zitat F.C. Qin, Y.T. Li, H.P. Qi, and L. Ju, Microstructure-Texture-Mechanical Properties in Hot Rolling of A Centrifugal Casting Ring Blank, J. Mater. Eng. Perform., 2016, 25(3), p 1237–1248CrossRef F.C. Qin, Y.T. Li, H.P. Qi, and L. Ju, Microstructure-Texture-Mechanical Properties in Hot Rolling of A Centrifugal Casting Ring Blank, J. Mater. Eng. Perform., 2016, 25(3), p 1237–1248CrossRef
16.
Zurück zum Zitat H.P. Qi and Y.T. Li, Metadynamic Recrystallization of the As-Cast 42CrMo Steel After Normalizing and Tempering During Hot Compression, Chin. J. Mech. Eng., 2012, 25(5), p 853–859CrossRef H.P. Qi and Y.T. Li, Metadynamic Recrystallization of the As-Cast 42CrMo Steel After Normalizing and Tempering During Hot Compression, Chin. J. Mech. Eng., 2012, 25(5), p 853–859CrossRef
17.
Zurück zum Zitat M.L. Wang, Casting-Rolling Forming Process of 42CrMo Bearing Ring Blank, Bearing, 2013, 12, p 19–20 ((in Chinese)) M.L. Wang, Casting-Rolling Forming Process of 42CrMo Bearing Ring Blank, Bearing, 2013, 12, p 19–20 ((in Chinese))
18.
Zurück zum Zitat C. Revilla, B. López, and J.M. Rodriguez-Ibabe, Carbide Size Refinement by Controlling the Heating Rate During Induction Tempering in A Low Alloy Steel, Mater. Des., 2014, 62, p 296–304CrossRef C. Revilla, B. López, and J.M. Rodriguez-Ibabe, Carbide Size Refinement by Controlling the Heating Rate During Induction Tempering in A Low Alloy Steel, Mater. Des., 2014, 62, p 296–304CrossRef
19.
Zurück zum Zitat P. Phetlam and V. Uthaisangsuk, Microstructure Based Flow Stress Modeling For Quenched and Tempered Low Alloy Steel, Mater. Des., 2015, 82, p 189–199 P. Phetlam and V. Uthaisangsuk, Microstructure Based Flow Stress Modeling For Quenched and Tempered Low Alloy Steel, Mater. Des., 2015, 82, p 189–199
20.
Zurück zum Zitat J.D. Chen, W.L. Mo, P. Wang, and S.P. Lu, Effect of Tempering Temperature on the Impact Toughness of Steel 42CrMo, Acta Metall. Sin., 2012, 48(10), p 1186–1193 ((in Chinese))CrossRef J.D. Chen, W.L. Mo, P. Wang, and S.P. Lu, Effect of Tempering Temperature on the Impact Toughness of Steel 42CrMo, Acta Metall. Sin., 2012, 48(10), p 1186–1193 ((in Chinese))CrossRef
21.
Zurück zum Zitat F.C. Qin, Y.T. Li, H.P. Qi, and S.W. Du, Research Experimental of Heat Treatment Process of 25Mn Steel Flange Based on Cast-Rolling Compound Forming Technology, J. Mech. Eng., 2014, 50(14), p 95–104 ((in Chinese))CrossRef F.C. Qin, Y.T. Li, H.P. Qi, and S.W. Du, Research Experimental of Heat Treatment Process of 25Mn Steel Flange Based on Cast-Rolling Compound Forming Technology, J. Mech. Eng., 2014, 50(14), p 95–104 ((in Chinese))CrossRef
22.
Zurück zum Zitat M.W. Tong, P.K.C. Venkatsurya, W.H. Zhou, R.D.K. Misra, B. Guo, K.G. Zhang, and W. Fan, Structure-Mechanical Property Relationship in A High Strength Microalloyed Steel with Low Yield Ratio: The Effect of Tempering Temperature, Mater. Sci. Eng. A, 2014, 609, p 209–216CrossRef M.W. Tong, P.K.C. Venkatsurya, W.H. Zhou, R.D.K. Misra, B. Guo, K.G. Zhang, and W. Fan, Structure-Mechanical Property Relationship in A High Strength Microalloyed Steel with Low Yield Ratio: The Effect of Tempering Temperature, Mater. Sci. Eng. A, 2014, 609, p 209–216CrossRef
23.
Zurück zum Zitat X.H. Han and L. Hua, Plastic Deformation Behaviors and Mechanical Properties of Rolled Rings of 20CrMnTi Alloy in Combined Radial and Axial Ring Rolling, Mater. Des., 2014, 58, p 508–517CrossRef X.H. Han and L. Hua, Plastic Deformation Behaviors and Mechanical Properties of Rolled Rings of 20CrMnTi Alloy in Combined Radial and Axial Ring Rolling, Mater. Des., 2014, 58, p 508–517CrossRef
24.
Zurück zum Zitat Annual book of ASTM Standards. ASTM E8M-04 Standard Test Methods for Tension Testing of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005 Annual book of ASTM Standards. ASTM E8M-04 Standard Test Methods for Tension Testing of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005
25.
Zurück zum Zitat Annual book of ASTM Standards. ASTM E23-06 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005 Annual book of ASTM Standards. ASTM E23-06 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005
26.
Zurück zum Zitat Y. Tian, Q. Li, Z.D. Wang, and G.D. Wang, Effects of Ultra Fast Cooling on Microstructure and Mechanical Properties of Pipeline Steels, J. Mater. Eng. Perform., 2015, 24, p 3307–3314CrossRef Y. Tian, Q. Li, Z.D. Wang, and G.D. Wang, Effects of Ultra Fast Cooling on Microstructure and Mechanical Properties of Pipeline Steels, J. Mater. Eng. Perform., 2015, 24, p 3307–3314CrossRef
27.
Zurück zum Zitat Annual book of ASTM Standards. ASTM E10-01 Standard Test Method for Brinell Hardness of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005 Annual book of ASTM Standards. ASTM E10-01 Standard Test Method for Brinell Hardness of Metallic Materials, vol. 03.01. ASTM International, West Conshohocken, 2005
28.
Zurück zum Zitat A. Mandal and T.K. Bandyopadhay, Effect of Tempering on Microstructure and Tensile Properties of Niobium Modified Martensitic 9Cr Heat Resistant Steel, Mater. Sci. Eng. A, 2015, 620, p 463–470CrossRef A. Mandal and T.K. Bandyopadhay, Effect of Tempering on Microstructure and Tensile Properties of Niobium Modified Martensitic 9Cr Heat Resistant Steel, Mater. Sci. Eng. A, 2015, 620, p 463–470CrossRef
29.
Zurück zum Zitat X.G. Tao, LZh Han, and J.F. Gu, Effect of Tempering on Microstructure Evolution and Mechanical Properties of X12CrMoWVNbN10-1-1 Steel, Mater. Sci. Eng. A, 2014, 618, p 189–204CrossRef X.G. Tao, LZh Han, and J.F. Gu, Effect of Tempering on Microstructure Evolution and Mechanical Properties of X12CrMoWVNbN10-1-1 Steel, Mater. Sci. Eng. A, 2014, 618, p 189–204CrossRef
30.
Zurück zum Zitat P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu, Effect of Tempering Temperature on the Toughness of 9Cr-3W-3Co Martensitic Heat Resistant Steel, Mater. Des., 2014, 54, p 874–879CrossRef P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu, Effect of Tempering Temperature on the Toughness of 9Cr-3W-3Co Martensitic Heat Resistant Steel, Mater. Des., 2014, 54, p 874–879CrossRef
31.
Zurück zum Zitat M.Q. Wang, H. Dong, W.J. Hui, S.L. Cheng, and Y.Q. Weng, Effect of Heat Treatment on Delayed Fracture Resistance of Structural Steel 42CrMo, Acta Metall. Sin., 2002, 38(7), p 715–719 ((in Chinese)) M.Q. Wang, H. Dong, W.J. Hui, S.L. Cheng, and Y.Q. Weng, Effect of Heat Treatment on Delayed Fracture Resistance of Structural Steel 42CrMo, Acta Metall. Sin., 2002, 38(7), p 715–719 ((in Chinese))
32.
Zurück zum Zitat G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A, 1999, 273–275, p 40–57CrossRef G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A, 1999, 273–275, p 40–57CrossRef
33.
Zurück zum Zitat C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, and F. Zhang, Effect of Microstructure on the Strength of 25CrMo48V Martensitic Steel Tempered at Different Temperature and Time, Mater. Des., 2012, 36, p 220–226CrossRef C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, and F. Zhang, Effect of Microstructure on the Strength of 25CrMo48V Martensitic Steel Tempered at Different Temperature and Time, Mater. Des., 2012, 36, p 220–226CrossRef
34.
Zurück zum Zitat M. Jung, S.J. Lee, and Y.K. Lee, Microstructural and Dilatational Changes During Tempering and Tempering Kinetics in Martensitic Medium-Carbon Steel, Metall. Mater. Trans. A, 2009, 40, p 551–559CrossRef M. Jung, S.J. Lee, and Y.K. Lee, Microstructural and Dilatational Changes During Tempering and Tempering Kinetics in Martensitic Medium-Carbon Steel, Metall. Mater. Trans. A, 2009, 40, p 551–559CrossRef
35.
Zurück zum Zitat T. Furuhara, K. Kobayashi, and T. Maki, Control of Cementite Precipitation in Lath Martensite by Rapid Heating and Tempering, ISIJ Int., 2004, 44, p 1937–1944CrossRef T. Furuhara, K. Kobayashi, and T. Maki, Control of Cementite Precipitation in Lath Martensite by Rapid Heating and Tempering, ISIJ Int., 2004, 44, p 1937–1944CrossRef
36.
Zurück zum Zitat JB/T 6396-2006, Specification for the Heavy Alloy Structural Steel Forgings, Machine Press of China, Beijing, 2006 JB/T 6396-2006, Specification for the Heavy Alloy Structural Steel Forgings, Machine Press of China, Beijing, 2006
37.
Zurück zum Zitat JB/T 5000.6-2007, Heavy Mechanical General Techniques and Standards-Part 6: Steel Castings, Machine Press of China, Beijing, 2007 JB/T 5000.6-2007, Heavy Mechanical General Techniques and Standards-Part 6: Steel Castings, Machine Press of China, Beijing, 2007
38.
Zurück zum Zitat W. Srijampan, A. Wiengmoon, M. Morakotjinda, R. Krataitong, T. Yotkaew, N. Tosangthum, and R. Tongsri, Microstructure and Mechanical Property of Sintered Fe-Cr-Mo Steels due to Phase Transformations with Fast Cooling Rates, Mater. Des., 2015, 88, p 693–701 W. Srijampan, A. Wiengmoon, M. Morakotjinda, R. Krataitong, T. Yotkaew, N. Tosangthum, and R. Tongsri, Microstructure and Mechanical Property of Sintered Fe-Cr-Mo Steels due to Phase Transformations with Fast Cooling Rates, Mater. Des., 2015, 88, p 693–701
39.
Zurück zum Zitat L. Ciripova, E. Hryha, E. Dudrova, and A. Vyrostkova, Prediction of Mechanical Properties of Fe-Cr-Mo Sintered Steel in Relationship with Microstructure, Mater. Des., 2012, 35, p 619–625CrossRef L. Ciripova, E. Hryha, E. Dudrova, and A. Vyrostkova, Prediction of Mechanical Properties of Fe-Cr-Mo Sintered Steel in Relationship with Microstructure, Mater. Des., 2012, 35, p 619–625CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of As-cast 42CrMo Ring Blank During Hot Rolling and Subsequent Quenching and Tempering
verfasst von
Fangcheng Qin
Yongtang Li
Huiping Qi
Xiaojian Wei
Publikationsdatum
26.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2497-2

Weitere Artikel der Ausgabe 3/2017

Journal of Materials Engineering and Performance 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.