Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2019

01.05.2019

Microstructure and Work Hardening Behavior of Micro-plasma Arc Welded AISI 316L Sheet Joint

verfasst von: Dipankar Saha, Sukhomay Pal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this research is to investigate the microstructural changes and work hardening behavior of AISI 316L 0.5-mm-thick sheet due to micro-plasma arc welding. AISI 316L similar sheets were welded in single-pass square butt joint configuration. The microstructure in the fusion zone typically contains a variety of complex δ-ferrite-austenitic structure, which significantly increased hardness value compared to the base material because of rapid solidification of the weld pool. Systematic tensile test was performed to investigate strain rate sensitivity of the welded joint under quasi-static loading conditions. The multistage work hardening behavior was determined by Kocks–Mecking (K–M) model and differential Crussard–Jaoul analysis. In both the cases, stage III work hardening behavior and stage IV work hardening behavior were observed. The stress–strain curves of welded specimen at different strain rates were analyzed in terms of Hollomon, Ludwik and Swift equations to determine work hardening exponent values. The welded joints were ruptured in the transition zone of heat affected and fusion zones. The fractographic observation exhibited variation in dimple and void density over strain rate from 0.0001 to 0.0015 s−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31(8), p 3630–3640CrossRef W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31(8), p 3630–3640CrossRef
2.
Zurück zum Zitat C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI, 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52, p 3097–3110CrossRef C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI, 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52, p 3097–3110CrossRef
3.
Zurück zum Zitat L.I. Ruipeng, Y. Zhang, and L.-W. Tong, Numerical Study of the Cyclic Load Behavior of AISI 316L Stainless Steel Shear Links for Seismic Fuse Device, Front. Struct. Civ. Eng., 2014, 8(4), p 414–426CrossRef L.I. Ruipeng, Y. Zhang, and L.-W. Tong, Numerical Study of the Cyclic Load Behavior of AISI 316L Stainless Steel Shear Links for Seismic Fuse Device, Front. Struct. Civ. Eng., 2014, 8(4), p 414–426CrossRef
4.
Zurück zum Zitat K. Danial, M. Amir, and M. Javad, Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45, p 4423–4442CrossRef K. Danial, M. Amir, and M. Javad, Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45, p 4423–4442CrossRef
5.
Zurück zum Zitat C.C. Silva, H.C. de Miranda, H.B. de Sant’Ana, and J.P. Farias, Microstructure, Hardness and Petroleum Corrosion Evaluation of 316L/AWS E309MoL-16 Weld Metal, Mater. Charact., 2009, 60(4), p 346–352CrossRef C.C. Silva, H.C. de Miranda, H.B. de Sant’Ana, and J.P. Farias, Microstructure, Hardness and Petroleum Corrosion Evaluation of 316L/AWS E309MoL-16 Weld Metal, Mater. Charact., 2009, 60(4), p 346–352CrossRef
6.
Zurück zum Zitat R. Sánchez-Tovar, M.T. Montañés, and J. García-Antón, Effect of the Micro-plasma Arc Welding Technique on the Microstructure and Pitting Corrosion of AISI, 316L Stainless Steels in Heavy LiBr Brines, Corros. Sci., 2011, 53(8), p 2598–2610CrossRef R. Sánchez-Tovar, M.T. Montañés, and J. García-Antón, Effect of the Micro-plasma Arc Welding Technique on the Microstructure and Pitting Corrosion of AISI, 316L Stainless Steels in Heavy LiBr Brines, Corros. Sci., 2011, 53(8), p 2598–2610CrossRef
7.
Zurück zum Zitat C. Garcia, F. Martin, P. De Tiedra, Y. Blanco, and M. Lopez, Pitting Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell, Corros. Sci., 2008, 50, p 1184–1194CrossRef C. Garcia, F. Martin, P. De Tiedra, Y. Blanco, and M. Lopez, Pitting Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell, Corros. Sci., 2008, 50, p 1184–1194CrossRef
8.
Zurück zum Zitat M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346CrossRef M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346CrossRef
9.
Zurück zum Zitat Y.H. Kim et al., The Effect of Sigma Phases Formation Depending on Cr/Ni Equivalent Ratio in AISI, 316L Weldments, Mater. Des., 2011, 32(1), p 330–336CrossRef Y.H. Kim et al., The Effect of Sigma Phases Formation Depending on Cr/Ni Equivalent Ratio in AISI, 316L Weldments, Mater. Des., 2011, 32(1), p 330–336CrossRef
10.
Zurück zum Zitat S.M. Tabatabaeipour and F. Honarvar, A Comparative Evaluation of Ultrasonic Testing of AISI, 316L Welds Made by Shielded Metal Arc Welding and Gas Tungsten Arc Welding Processes, J. Mater. Process. Technol., 2010, 210(8), p 1043–1050CrossRef S.M. Tabatabaeipour and F. Honarvar, A Comparative Evaluation of Ultrasonic Testing of AISI, 316L Welds Made by Shielded Metal Arc Welding and Gas Tungsten Arc Welding Processes, J. Mater. Process. Technol., 2010, 210(8), p 1043–1050CrossRef
11.
Zurück zum Zitat V.A. Ventrella, J.R. Berretta, and W. De Rossi, Pulsed Nd:YAG Laser Seam Welding of AISI, 316L Stainless Steel Thin Foils, J. Mater. Process. Technol., 2010, 210(14), p 1838–1843CrossRef V.A. Ventrella, J.R. Berretta, and W. De Rossi, Pulsed Nd:YAG Laser Seam Welding of AISI, 316L Stainless Steel Thin Foils, J. Mater. Process. Technol., 2010, 210(14), p 1838–1843CrossRef
12.
Zurück zum Zitat A. Kobayashi, New Applied Technology of Plasma Heat Sources, Weld. Int., 1990, 4(4), p 276–282CrossRef A. Kobayashi, New Applied Technology of Plasma Heat Sources, Weld. Int., 1990, 4(4), p 276–282CrossRef
13.
Zurück zum Zitat K.H. Tseng, S.T. Hsieh, and C.C. Tseng, Effect of Process Parameters of Micro-plasma Arc Welding on Morphology and Quality in Stainless Steel Edge Joint Welds, Sci. Technol. Weld. Join., 2003, 8(6), p 423–430CrossRef K.H. Tseng, S.T. Hsieh, and C.C. Tseng, Effect of Process Parameters of Micro-plasma Arc Welding on Morphology and Quality in Stainless Steel Edge Joint Welds, Sci. Technol. Weld. Join., 2003, 8(6), p 423–430CrossRef
14.
Zurück zum Zitat J.C. Metcalfe and M.B.C. Quigley, Heat transfer in plasma-arc welding, Weld. Res. Abroad, 1975, 12, p 99–104 J.C. Metcalfe and M.B.C. Quigley, Heat transfer in plasma-arc welding, Weld. Res. Abroad, 1975, 12, p 99–104
15.
Zurück zum Zitat C.S. Wu, L. Wang, W.J. Ren, and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85CrossRef C.S. Wu, L. Wang, W.J. Ren, and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85CrossRef
16.
Zurück zum Zitat K.S. Prasad, C.S. Rao, and D.N. Rao, Study on Weld Quality Characteristics of Micro Plasma Arc Welded Austenitic Stainless Steels, Procedia Eng., 2014, 97, p 752–757CrossRef K.S. Prasad, C.S. Rao, and D.N. Rao, Study on Weld Quality Characteristics of Micro Plasma Arc Welded Austenitic Stainless Steels, Procedia Eng., 2014, 97, p 752–757CrossRef
17.
Zurück zum Zitat K. Siva, C. Srinivasa, and D. Nageswara, An Investigation on Weld Quality Characteristics of Pulsed Current Micro Plasma Arc Welded Austenitic Stainless Steels, Int. J. Eng. Sci. Technol., 2012, 4(2), p 159–168 K. Siva, C. Srinivasa, and D. Nageswara, An Investigation on Weld Quality Characteristics of Pulsed Current Micro Plasma Arc Welded Austenitic Stainless Steels, Int. J. Eng. Sci. Technol., 2012, 4(2), p 159–168
18.
Zurück zum Zitat S.M. Chowdhury et al., Tensile Properties and Strain-Hardening Behavior of Double-Sided Arc Welded and Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2951–2961CrossRef S.M. Chowdhury et al., Tensile Properties and Strain-Hardening Behavior of Double-Sided Arc Welded and Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2951–2961CrossRef
19.
Zurück zum Zitat Q. Jia, W. Guo, P. Peng, M. Li, Y. Zhu, and G. Zou, Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint, J. Mater. Eng. Perform., 2016, 25(2), p 668–676CrossRef Q. Jia, W. Guo, P. Peng, M. Li, Y. Zhu, and G. Zou, Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint, J. Mater. Eng. Perform., 2016, 25(2), p 668–676CrossRef
20.
Zurück zum Zitat H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1414–1423CrossRef H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1414–1423CrossRef
21.
Zurück zum Zitat M.G. Stout and P.S. Follansbee, Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel, J. Eng. Mater. Technol., 1986, 108, p 344–353CrossRef M.G. Stout and P.S. Follansbee, Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel, J. Eng. Mater. Technol., 1986, 108, p 344–353CrossRef
22.
Zurück zum Zitat P.S. Follansbee, High strain-rate deformation of FCC metals and alloys, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Vol 52, Mechanical Engineering, Marcel Dekker Inc., New York, 1986, p 451–479 P.S. Follansbee, High strain-rate deformation of FCC metals and alloys, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Vol 52, Mechanical Engineering, Marcel Dekker Inc., New York, 1986, p 451–479
23.
Zurück zum Zitat J.A. Lichtenfeld, C.J. Van Tyne, and M.C. Mataya, Effect of Strain Rate on Stress–Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37(1), p 147–161CrossRef J.A. Lichtenfeld, C.J. Van Tyne, and M.C. Mataya, Effect of Strain Rate on Stress–Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37(1), p 147–161CrossRef
24.
Zurück zum Zitat A. Kundu and P.C. Chakraborti, Effect of Strain Rate on Quasistatic Tensile Flow Behaviour of Solution Annealed 304 Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2010, 45(20), p 5482–5489CrossRef A. Kundu and P.C. Chakraborti, Effect of Strain Rate on Quasistatic Tensile Flow Behaviour of Solution Annealed 304 Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2010, 45(20), p 5482–5489CrossRef
25.
Zurück zum Zitat C. Garion, B. Skoczeń, and S. Sgobba, Constitutive Modelling and Identification of Parameters of the Plastic Strain-Induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures, Int. J. Plast., 2006, 22(7), p 1234–1264CrossRef C. Garion, B. Skoczeń, and S. Sgobba, Constitutive Modelling and Identification of Parameters of the Plastic Strain-Induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures, Int. J. Plast., 2006, 22(7), p 1234–1264CrossRef
26.
Zurück zum Zitat N. Solomon and I. Solomon, Deformation Induced Martensite in AISI, 316 Stainless Steel, Rev. Metal., 2010, 46(2), p 121–128CrossRef N. Solomon and I. Solomon, Deformation Induced Martensite in AISI, 316 Stainless Steel, Rev. Metal., 2010, 46(2), p 121–128CrossRef
27.
Zurück zum Zitat K. Spencer, M. Véron, K. Yu-Zhang, and J.D. Embury, The Strain Induced Martensite Transformation in Austenitic Stainless Steels: Part 1—Influence of Temperature and Strain History, Mater. Sci. Technol., 2009, 25(1), p 7–17CrossRef K. Spencer, M. Véron, K. Yu-Zhang, and J.D. Embury, The Strain Induced Martensite Transformation in Austenitic Stainless Steels: Part 1—Influence of Temperature and Strain History, Mater. Sci. Technol., 2009, 25(1), p 7–17CrossRef
28.
Zurück zum Zitat K.K. Singh, Strain Hardening Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2004, 20(9), p 1134–1142CrossRef K.K. Singh, Strain Hardening Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2004, 20(9), p 1134–1142CrossRef
29.
Zurück zum Zitat G. Angella, Strain Hardening Analysis of an Austenitic Stainless Steel at High Temperatures Based on the One-Parameter Model, Mater. Sci. Eng. A, 2012, 532, p 381–391CrossRef G. Angella, Strain Hardening Analysis of an Austenitic Stainless Steel at High Temperatures Based on the One-Parameter Model, Mater. Sci. Eng. A, 2012, 532, p 381–391CrossRef
30.
Zurück zum Zitat A. Soussan and S. Degallaix, Work-Hardening Behaviour of Nitrogen-Alloyed Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 142, p 169–176CrossRef A. Soussan and S. Degallaix, Work-Hardening Behaviour of Nitrogen-Alloyed Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 142, p 169–176CrossRef
31.
Zurück zum Zitat K.G. Samuel and P. Rodriguez, On Power-Law Type Relationships and the Ludwigson Explanation for the Stress–Strain Behaviour of AISI, 316 Stainless Steel, J. Mater. Sci., 2005, 40(21), p 5727–5731CrossRef K.G. Samuel and P. Rodriguez, On Power-Law Type Relationships and the Ludwigson Explanation for the Stress–Strain Behaviour of AISI, 316 Stainless Steel, J. Mater. Sci., 2005, 40(21), p 5727–5731CrossRef
32.
Zurück zum Zitat M. Zhu and F. Xuan, Effect of Microstructure on Strain Hardening and Strength Distributions Along a Cr–Ni–Mo–V Steel Welded Joint, Mater. Des., 2015, 65, p 707–715CrossRef M. Zhu and F. Xuan, Effect of Microstructure on Strain Hardening and Strength Distributions Along a Cr–Ni–Mo–V Steel Welded Joint, Mater. Des., 2015, 65, p 707–715CrossRef
33.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875CrossRef
34.
Zurück zum Zitat B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981CrossRef B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981CrossRef
35.
Zurück zum Zitat H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18CrossRef H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18CrossRef
36.
Zurück zum Zitat M. Umemoto, Z.G. Liu, S. Sugimoto, and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A, 2000, 31A(July), p 1785–1794CrossRef M. Umemoto, Z.G. Liu, S. Sugimoto, and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A, 2000, 31A(July), p 1785–1794CrossRef
37.
Zurück zum Zitat ASTM Standard E 407, Standard Practice for Microetching Metals and Alloys. ASTM International, 1999, 11(November), p 1–21. ASTM Standard E 407, Standard Practice for Microetching Metals and Alloys. ASTM International, 1999, 11(November), p 1–21.
38.
Zurück zum Zitat ASTM Standard E8/E8m, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, 2008, p 743–746. ASTM Standard E8/E8m, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, 2008, p 743–746.
39.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, Boston, 1986 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, Boston, 1986
40.
Zurück zum Zitat J. Elmer, S. Allen, and T. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131CrossRef J. Elmer, S. Allen, and T. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131CrossRef
41.
Zurück zum Zitat T.P.S. Gill, M. Vijayalakshmi, J.B. Gnanamoorthy, and K.A. Padmanabhan, Transformation of Delta-Ferrite During the Postweld Heat Treatment of Type 316L Stainless Steel Weld Metal. Weld. J. Suppl., 1986, 65(5), p 122–128 T.P.S. Gill, M. Vijayalakshmi, J.B. Gnanamoorthy, and K.A. Padmanabhan, Transformation of Delta-Ferrite During the Postweld Heat Treatment of Type 316L Stainless Steel Weld Metal. Weld. J. Suppl., 1986, 65(5), p 122–128
42.
Zurück zum Zitat J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44CrossRef J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44CrossRef
43.
Zurück zum Zitat ASTM Int, ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM Stand, 2012, p 1–43. ASTM Int, ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM Stand, 2012, p 1–43.
44.
Zurück zum Zitat Y. Liu, D. Dong, L. Wang, X. Chu, P. Wang, and M. Jin, Strain Rate Dependent Deformation and Failure Behavior of Laser Welded DP780 Steel Joint Under Dynamic Tensile Loading, Mater. Sci. Eng. A, 2015, 627, p 296–305CrossRef Y. Liu, D. Dong, L. Wang, X. Chu, P. Wang, and M. Jin, Strain Rate Dependent Deformation and Failure Behavior of Laser Welded DP780 Steel Joint Under Dynamic Tensile Loading, Mater. Sci. Eng. A, 2015, 627, p 296–305CrossRef
45.
Zurück zum Zitat P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, and P. Pilvin, Characterization of Strain-Induced Martensitic Transformation in a Metastable Austenitic Stainless Steel, Mater. Des., 2010, 31(4), p 1821–1827CrossRef P. Haušild, V. Davydov, J. Drahokoupil, M. Landa, and P. Pilvin, Characterization of Strain-Induced Martensitic Transformation in a Metastable Austenitic Stainless Steel, Mater. Des., 2010, 31(4), p 1821–1827CrossRef
46.
Zurück zum Zitat N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007CrossRef N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007CrossRef
47.
Zurück zum Zitat J. Luo, Z. Mei, W. Tian, and Z. Wang, Diminishing of Work Hardening in Electroformed Polycrystalline Copper with Nano-sized and uf-Sized Twins, Mater. Sci. Eng. A, 2006, 441(1–2), p 282–290CrossRef J. Luo, Z. Mei, W. Tian, and Z. Wang, Diminishing of Work Hardening in Electroformed Polycrystalline Copper with Nano-sized and uf-Sized Twins, Mater. Sci. Eng. A, 2006, 441(1–2), p 282–290CrossRef
48.
Zurück zum Zitat W.D. Callister and D.G. Rethwisch, Materials Science and Engineering—An Introduction, 9th ed., John Wiley & Sons, Inc., Hoboken, 2014 W.D. Callister and D.G. Rethwisch, Materials Science and Engineering—An Introduction, 9th ed., John Wiley & Sons, Inc., Hoboken, 2014
49.
Zurück zum Zitat G. Sharma, D.K. Dwivedi, and P.K. Jain, Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(12), p 5997–6005CrossRef G. Sharma, D.K. Dwivedi, and P.K. Jain, Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(12), p 5997–6005CrossRef
50.
Zurück zum Zitat J. Cuddy and M. Nabil Bassim, Study of Dislocation Cell Structures from Uniaxial Deformation of AISI, 4340 Steel, Mater. Sci. Eng. A, 1989, 113, p 421–429CrossRef J. Cuddy and M. Nabil Bassim, Study of Dislocation Cell Structures from Uniaxial Deformation of AISI, 4340 Steel, Mater. Sci. Eng. A, 1989, 113, p 421–429CrossRef
51.
Zurück zum Zitat B.K. Choudhary, J. Christopher, and E.I. Samuel, Applicability of Kocks–Mecking Approach for Tensile Work Hardening in P9 Steel, Mater. Sci. Technol., 2012, 28(6), p 644–650CrossRef B.K. Choudhary, J. Christopher, and E.I. Samuel, Applicability of Kocks–Mecking Approach for Tensile Work Hardening in P9 Steel, Mater. Sci. Technol., 2012, 28(6), p 644–650CrossRef
52.
Zurück zum Zitat Y. Il Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53(11), p 3125–3134CrossRef Y. Il Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53(11), p 3125–3134CrossRef
53.
Zurück zum Zitat X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901CrossRef X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901CrossRef
54.
Zurück zum Zitat B.K. Jha, R. Avtar, V.S. Dwivedi, and V. Ramaswamy, Applicability of Modified Crussard–Jaoul Analysis on the Deformation Behaviour of Dual-Phase Steels, J. Mater. Sci. Lett., 1987, 6(8), p 891–893CrossRef B.K. Jha, R. Avtar, V.S. Dwivedi, and V. Ramaswamy, Applicability of Modified Crussard–Jaoul Analysis on the Deformation Behaviour of Dual-Phase Steels, J. Mater. Sci. Lett., 1987, 6(8), p 891–893CrossRef
55.
Zurück zum Zitat N. Farabi, D.L. Chen, and Y. Zhou, Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2012, 21(2), p 222–230CrossRef N. Farabi, D.L. Chen, and Y. Zhou, Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2012, 21(2), p 222–230CrossRef
56.
Zurück zum Zitat A. Das, Contribution of Deformation-Induced Martensite to Fracture Appearance of Austenitic Stainless Steel, Mater. Sci. Technol. (United Kingdom), 2016, 32(13), p 1366–1373CrossRef A. Das, Contribution of Deformation-Induced Martensite to Fracture Appearance of Austenitic Stainless Steel, Mater. Sci. Technol. (United Kingdom), 2016, 32(13), p 1366–1373CrossRef
Metadaten
Titel
Microstructure and Work Hardening Behavior of Micro-plasma Arc Welded AISI 316L Sheet Joint
verfasst von
Dipankar Saha
Sukhomay Pal
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04064-5

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Engineering and Performance 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.