Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

28.12.2017

Microstructure Characteristic and Mechanical Properties of High-Strength Mg-Nd-Zn-Zr Alloy Seamless Tube Produced by Integrated Extrusion

verfasst von: Xingwei Zheng, Peng Luo, Jie Dong, Shiming Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large size seamless tubes of Mg-3.0Nd-0.4Zn-0.4Zr alloy (NZ30K, in weight percent) were prepared by integrating backward extrusion with forward extrusion. Microstructure, mechanical properties, aging behavior and texture of the tubes were investigated. The microstructure of as-extruded tube is characterized by the blend of considerably elongated grains and fine equiaxed grains. The maximum values of yield strength and ultimate tensile strength, i.e., 191 and 245 MPa, were obtained in the as-extruded tubes, and these values were increased to 212 and 267 MPa in the peak-aged tubes (T5), implying an increasing ratio of 9 and 11%, respectively. The peak value of the Vickers’ micro-hardness of the NZ30K tubes extruded at 673, 723 and 753 K are 66, 64 and 60 (kilogram-force per square millimeter), respectively. The texture of NZ30K tube is weak, the primary mechanism behind which is suggested to be the particle-induced nucleation responsible for the promotion of recrystallization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng, and S. Kamado, Effect of Extrusion Parameters on Microstructure and Mechanical Properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt.%) Alloy, Mater. Sci. Eng. A, 2017, 685(2), p 159–167CrossRef C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng, and S. Kamado, Effect of Extrusion Parameters on Microstructure and Mechanical Properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt.%) Alloy, Mater. Sci. Eng. A, 2017, 685(2), p 159–167CrossRef
2.
Zurück zum Zitat J.M. Lv, F.Y. Hu, Q.D. Cao, R.S. Yuan, Z.L. Wu, H.M. Cai, L. Zhao, and X.P. Zhang, Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP, J. Mater. Eng. Perform., 2017, 26(3), p 1463–1474CrossRef J.M. Lv, F.Y. Hu, Q.D. Cao, R.S. Yuan, Z.L. Wu, H.M. Cai, L. Zhao, and X.P. Zhang, Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP, J. Mater. Eng. Perform., 2017, 26(3), p 1463–1474CrossRef
3.
Zurück zum Zitat M.J. Zhao, Z.L. Wu, and H.M. Cai, Effects of Mandrel Angle on Hydrostatic Extrusion Process of Magnesium Alloy Tube, Rare Metal Mater. Eng., 2017, 46(5), p 1214–1218CrossRef M.J. Zhao, Z.L. Wu, and H.M. Cai, Effects of Mandrel Angle on Hydrostatic Extrusion Process of Magnesium Alloy Tube, Rare Metal Mater. Eng., 2017, 46(5), p 1214–1218CrossRef
4.
Zurück zum Zitat H. Zhang, G.S. Huang, J.F. Fan, H.J. Roven, B.S. Xu, and H.B. Dong, Deep Drawability and Drawing Behavior of AZ31 Alloy Sheets with Different Initial Texture, J. Alloy. Compd., 2014, 615(12), p 302–310CrossRef H. Zhang, G.S. Huang, J.F. Fan, H.J. Roven, B.S. Xu, and H.B. Dong, Deep Drawability and Drawing Behavior of AZ31 Alloy Sheets with Different Initial Texture, J. Alloy. Compd., 2014, 615(12), p 302–310CrossRef
5.
Zurück zum Zitat H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, and H.B. Dong, Microstructure Evolution and Mechanical Properties of Twinned AZ31 Alloy Plates at Lower Elevated Temperature, J. Alloy. Compd., 2014, 615(12), p 687–692CrossRef H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, and H.B. Dong, Microstructure Evolution and Mechanical Properties of Twinned AZ31 Alloy Plates at Lower Elevated Temperature, J. Alloy. Compd., 2014, 615(12), p 687–692CrossRef
6.
Zurück zum Zitat M. Okayasu and T. Muranaga, High Strength of Mg-9%Al-1%Zn Alloys Achieved by Severe Working, J. Mater. Eng. Perform., 2017, 26(10), p 4977–4989CrossRef M. Okayasu and T. Muranaga, High Strength of Mg-9%Al-1%Zn Alloys Achieved by Severe Working, J. Mater. Eng. Perform., 2017, 26(10), p 4977–4989CrossRef
7.
Zurück zum Zitat Z. Cao, F.H. Wang, Q. Wan, Z.Y. Zhang, L. Jin, and J. Dong, Microstructure and Mechanical Properties of AZ80 Magnesium Alloy Tube Fabricated by Hot Flow Forming, Mater. Des., 2015, 67(2), p 64–71CrossRef Z. Cao, F.H. Wang, Q. Wan, Z.Y. Zhang, L. Jin, and J. Dong, Microstructure and Mechanical Properties of AZ80 Magnesium Alloy Tube Fabricated by Hot Flow Forming, Mater. Des., 2015, 67(2), p 64–71CrossRef
8.
Zurück zum Zitat R.S. Yuan, Z.L. Wu, H.M. Cai, L. Zhao, and X.P. Zhang, Effect of Extrusion Parameters on Tensile Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP, Mater. Des., 2016, 101(7), p 131–136CrossRef R.S. Yuan, Z.L. Wu, H.M. Cai, L. Zhao, and X.P. Zhang, Effect of Extrusion Parameters on Tensile Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP, Mater. Des., 2016, 101(7), p 131–136CrossRef
9.
Zurück zum Zitat P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai, Effects of Heat Treatments on the Microstructures, Mechanical Properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy, Mater. Sci. Eng. A, 2008, 486(1–2), p 183–192 P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai, Effects of Heat Treatments on the Microstructures, Mechanical Properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy, Mater. Sci. Eng. A, 2008, 486(1–2), p 183–192
10.
Zurück zum Zitat X.W. Zheng, J. Dong, Y.Z. Xiang, J.W. Chang, F.H. Wang, L. Jin, Y.X. Wang, and W.J. Ding, Formability, Mechanical and Corrosive Properties of Mg-Nd-Zn-Zr Magnesium Alloy Seamless Tubes, Mater. Des., 2010, 31(3), p 1417–1422CrossRef X.W. Zheng, J. Dong, Y.Z. Xiang, J.W. Chang, F.H. Wang, L. Jin, Y.X. Wang, and W.J. Ding, Formability, Mechanical and Corrosive Properties of Mg-Nd-Zn-Zr Magnesium Alloy Seamless Tubes, Mater. Des., 2010, 31(3), p 1417–1422CrossRef
11.
Zurück zum Zitat X.W. Zheng, J. Dong, N. Zhou, P.H. Fu, S.S. Yao, and W.J. Ding, Effect of Process Parameters on Structure and Macrosegregation upon Direct Chill Casting of Mg-Nd-Zn-Zr Alloy, Mater. Sci. Technol., 2011, 27(1), p 275–281CrossRef X.W. Zheng, J. Dong, N. Zhou, P.H. Fu, S.S. Yao, and W.J. Ding, Effect of Process Parameters on Structure and Macrosegregation upon Direct Chill Casting of Mg-Nd-Zn-Zr Alloy, Mater. Sci. Technol., 2011, 27(1), p 275–281CrossRef
12.
Zurück zum Zitat X.W. Zheng, J. Dong, L. Jin, F.H. Wang, and W.J. Ding, Extrusion die of magnesium alloy seamless tube, Chinese Patent: CN 101920277 A, 2010 X.W. Zheng, J. Dong, L. Jin, F.H. Wang, and W.J. Ding, Extrusion die of magnesium alloy seamless tube, Chinese Patent: CN 101920277 A, 2010
13.
Zurück zum Zitat X.W. Zheng, J. Dong, D.D. Yin, W.C. Liu, F.H. Wang, L. Jin, and W.J. Ding, Forgeability and Die-Forging Forming of Direct Chill Casting Mg-Nd-Zn-Zr Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(16-17), p 3690–3694CrossRef X.W. Zheng, J. Dong, D.D. Yin, W.C. Liu, F.H. Wang, L. Jin, and W.J. Ding, Forgeability and Die-Forging Forming of Direct Chill Casting Mg-Nd-Zn-Zr Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(16-17), p 3690–3694CrossRef
14.
Zurück zum Zitat R. Nadella, D.G. Eskin, and Q. Du, Macrosegregation in Direct-Chill Casting of Aluminum Alloys, Prog. Mater Sci., 2008, 53(3), p 421–480CrossRef R. Nadella, D.G. Eskin, and Q. Du, Macrosegregation in Direct-Chill Casting of Aluminum Alloys, Prog. Mater Sci., 2008, 53(3), p 421–480CrossRef
15.
Zurück zum Zitat K.S. Fong, A. Danno, M.J. Tan, and B.W. Chua, Tensile Flow Behavior of AZ31 Magnesium Alloy Processed by Severe Plastic Deformation And Post-annealing at Moderately High Temperatures, J. Mater. Process. Technol., 2017, 246(8), p 235–244CrossRef K.S. Fong, A. Danno, M.J. Tan, and B.W. Chua, Tensile Flow Behavior of AZ31 Magnesium Alloy Processed by Severe Plastic Deformation And Post-annealing at Moderately High Temperatures, J. Mater. Process. Technol., 2017, 246(8), p 235–244CrossRef
16.
Zurück zum Zitat G. Quan, Y. Shi, Y. Wang, B. Kang, T. Ku, and W. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress–Strain Data, Mater. Sci. Eng. A, 2011, 528(28), p 8051–8059CrossRef G. Quan, Y. Shi, Y. Wang, B. Kang, T. Ku, and W. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress–Strain Data, Mater. Sci. Eng. A, 2011, 528(28), p 8051–8059CrossRef
17.
Zurück zum Zitat L. Ma, R.K. Mishra, and M.P. Balogh, Effect of Zn on the Microstructure Evolution of Extruded Mg-3Nd(-Zn)-Zr(wt.%) alloys, Mater. Sci. Eng. A, 2012, 543(5), p 12–21CrossRef L. Ma, R.K. Mishra, and M.P. Balogh, Effect of Zn on the Microstructure Evolution of Extruded Mg-3Nd(-Zn)-Zr(wt.%) alloys, Mater. Sci. Eng. A, 2012, 543(5), p 12–21CrossRef
18.
Zurück zum Zitat J. Bohlen, S.B. Yi, and J. Swiostek, Microstructure and Texture Development During Hydrostatic Extrusion of Magnesium Alloy AZ31, Scr. Mater., 2005, 53(2), p 259–264CrossRef J. Bohlen, S.B. Yi, and J. Swiostek, Microstructure and Texture Development During Hydrostatic Extrusion of Magnesium Alloy AZ31, Scr. Mater., 2005, 53(2), p 259–264CrossRef
19.
Zurück zum Zitat D. Liu, Z.Y. Liu, and E.D. Wang, Effect of Rolling Reduction on Microstructure, Texture, Mechanical Properties and Mechanical Anisotropy of AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2014, 612(8), p 208–213CrossRef D. Liu, Z.Y. Liu, and E.D. Wang, Effect of Rolling Reduction on Microstructure, Texture, Mechanical Properties and Mechanical Anisotropy of AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2014, 612(8), p 208–213CrossRef
20.
Zurück zum Zitat M.A. Azeem, A. Tewari, and S. Mishra, Development of Novel Grain Morphology During Hot Extrusion of Magnesium AZ21 Alloy, Acta Mater., 2010, 58(5), p 1495–1502CrossRef M.A. Azeem, A. Tewari, and S. Mishra, Development of Novel Grain Morphology During Hot Extrusion of Magnesium AZ21 Alloy, Acta Mater., 2010, 58(5), p 1495–1502CrossRef
21.
Zurück zum Zitat T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, and G.B. Wei, Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression, J. Alloy. Compd., 2015, 639(8), p 79–88CrossRef T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, and G.B. Wei, Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression, J. Alloy. Compd., 2015, 639(8), p 79–88CrossRef
22.
Zurück zum Zitat P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia, A Modified Hall–Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66(10), p 785–788CrossRef P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia, A Modified Hall–Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66(10), p 785–788CrossRef
23.
Zurück zum Zitat P. Luo, Q.D. Hu, and X. Wu, Quantitatively Analyzing Strength Contribution vs Grain Boundary Scale Relation in Pure Titanium Subjected to Severe Plastic Deformation, Metall. Mater. Trans. A, 2016, 47(5), p 1922–1928CrossRef P. Luo, Q.D. Hu, and X. Wu, Quantitatively Analyzing Strength Contribution vs Grain Boundary Scale Relation in Pure Titanium Subjected to Severe Plastic Deformation, Metall. Mater. Trans. A, 2016, 47(5), p 1922–1928CrossRef
24.
Zurück zum Zitat W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy, Scr. Mater., 2011, 65(11), p 994–997CrossRef W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy, Scr. Mater., 2011, 65(11), p 994–997CrossRef
25.
Zurück zum Zitat Y.N. Wang and J.C. Huang, Grain Size Dependence of Yield Strength in Randomly Textured Mg-Al-Zn Alloy, Mater. Trans., 2007, 48(2), p 184–188CrossRef Y.N. Wang and J.C. Huang, Grain Size Dependence of Yield Strength in Randomly Textured Mg-Al-Zn Alloy, Mater. Trans., 2007, 48(2), p 184–188CrossRef
26.
Zurück zum Zitat Y. Wang and H. Choo, Influence of Texture on Hall–Petch Relationships in an Mg Alloy, Acta Mater., 2014, 81(12), p 83–97CrossRef Y. Wang and H. Choo, Influence of Texture on Hall–Petch Relationships in an Mg Alloy, Acta Mater., 2014, 81(12), p 83–97CrossRef
27.
Zurück zum Zitat A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, and H. El Kadiri, Nucleation and Preferential Growth Mechanism of Recrystallization Texture in High Purity Binary Magnesium-Rare Earth Alloy, Acta Mater., 2017, 138(10), p 27–41CrossRef A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, and H. El Kadiri, Nucleation and Preferential Growth Mechanism of Recrystallization Texture in High Purity Binary Magnesium-Rare Earth Alloy, Acta Mater., 2017, 138(10), p 27–41CrossRef
28.
Zurück zum Zitat Senn J.W. and Agnew S.R.: Texture randomization of magnesium alloys containing rare earth elements, in Proceedings of Magnesium Technology (2008), p. 153–158 Senn J.W. and Agnew S.R.: Texture randomization of magnesium alloys containing rare earth elements, in Proceedings of Magnesium Technology (2008), p. 153–158
29.
Zurück zum Zitat R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976 R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976
Metadaten
Titel
Microstructure Characteristic and Mechanical Properties of High-Strength Mg-Nd-Zn-Zr Alloy Seamless Tube Produced by Integrated Extrusion
verfasst von
Xingwei Zheng
Peng Luo
Jie Dong
Shiming Wang
Publikationsdatum
28.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3115-7

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.