Skip to main content
Erschienen in: Rare Metals 2/2018

19.12.2015

Microstructure characterization in a sensitized Al–Mg–Mn–Zn alloy

verfasst von: Chun-Yan Meng, Di Zhang, Ping-Ping Liu, Lin-Zhong Zhuang, Ji-Shan Zhang

Erschienen in: Rare Metals | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of Al–Mg–Mn–Zn alloys. In this study, sensitizing treatment was applied to an Al–Mg–Mn–Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) were used to characterize various second-phase particles and determine their orientation relationship with the Al matrix. After sensitizing treatment, τ-phase (Mg32(Al, Zn)49) is observed to precipitate along the grain boundaries in a coarser size, producing a discontinuous grain boundary precipitate structure. In addition, Mn-rich particles are found to form with various shapes, such as global, plate and rhombus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Kaibyshev R, Musin F, Lesuer DR, Nieh TG. Superlastic behavior of an Al–Mg alloy at elevated temperatures. Mater Sci Eng A. 2003;342(1–2):169.CrossRef Kaibyshev R, Musin F, Lesuer DR, Nieh TG. Superlastic behavior of an Al–Mg alloy at elevated temperatures. Mater Sci Eng A. 2003;342(1–2):169.CrossRef
[2]
Zurück zum Zitat Katsas S, Nikolaou J, Papadimitriou G. Corrosion resistance of repair welded naval aluminium alloys. Mater Des. 2007;28(3):831.CrossRef Katsas S, Nikolaou J, Papadimitriou G. Corrosion resistance of repair welded naval aluminium alloys. Mater Des. 2007;28(3):831.CrossRef
[3]
Zurück zum Zitat Popović M, Romhanji E. Characterization of microstructural changes in an Al–6.8 wt% Mg alloy by electrical resistivity measurements. Mater Sci Eng A. 2008;492(1–2):460.CrossRef Popović M, Romhanji E. Characterization of microstructural changes in an Al–6.8 wt% Mg alloy by electrical resistivity measurements. Mater Sci Eng A. 2008;492(1–2):460.CrossRef
[4]
Zurück zum Zitat Tan L, Allen TR. Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci. 2010;52(2):548.CrossRef Tan L, Allen TR. Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci. 2010;52(2):548.CrossRef
[5]
Zurück zum Zitat Davenport AL, Yuan Y, Ambat R, Connolly BJ, Strangwood M, Afseth A, Scamans G. Intergranular corrosion and stress corrosion cracking of sensitised AA5182. Mater Sci Forum. 2006;519–521:641.CrossRef Davenport AL, Yuan Y, Ambat R, Connolly BJ, Strangwood M, Afseth A, Scamans G. Intergranular corrosion and stress corrosion cracking of sensitised AA5182. Mater Sci Forum. 2006;519–521:641.CrossRef
[6]
Zurück zum Zitat Oguocha INA, Adigun OJ, Yannacopoulos S. Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116. J Mater Sci. 2008;43(12):4208.CrossRef Oguocha INA, Adigun OJ, Yannacopoulos S. Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116. J Mater Sci. 2008;43(12):4208.CrossRef
[7]
Zurück zum Zitat Conserva M, Leoni M. Effect of thermal and thermo-mechanical processing on the properties of Al–Mg alloys. Metall Trans A. 1975;6A(189–195):189.CrossRef Conserva M, Leoni M. Effect of thermal and thermo-mechanical processing on the properties of Al–Mg alloys. Metall Trans A. 1975;6A(189–195):189.CrossRef
[8]
Zurück zum Zitat Yukawa H, Murata Y, Morinaga M, Takahashi Y, Yoshida H. Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metall Mater. 1995;43(2):68.CrossRef Yukawa H, Murata Y, Morinaga M, Takahashi Y, Yoshida H. Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metall Mater. 1995;43(2):68.CrossRef
[9]
Zurück zum Zitat Carroll MC, Gouma PI, Mills MJ, Daehn GS, Dunbar BR. Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083. Scr Mater. 2000;42(4):335.CrossRef Carroll MC, Gouma PI, Mills MJ, Daehn GS, Dunbar BR. Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083. Scr Mater. 2000;42(4):335.CrossRef
[10]
Zurück zum Zitat Meng CY, Zhang D, Cui H, Zhuang LZ, Zhang JS. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys. J Alloy Compd. 2014;617:925.CrossRef Meng CY, Zhang D, Cui H, Zhuang LZ, Zhang JS. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys. J Alloy Compd. 2014;617:925.CrossRef
[11]
Zurück zum Zitat Otsuka M, Horiuchi R. On the solution softening effect of zinc on aluminum–magnesium alloy at high temperatures. Trans JIM. 1973;14:213.CrossRef Otsuka M, Horiuchi R. On the solution softening effect of zinc on aluminum–magnesium alloy at high temperatures. Trans JIM. 1973;14:213.CrossRef
[12]
Zurück zum Zitat Goetz RL. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scr Mater. 2005;52(91):851.CrossRef Goetz RL. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scr Mater. 2005;52(91):851.CrossRef
[13]
Zurück zum Zitat Robson JD, Henry DT, Davis B. Particle effects on recrystallization in magnesium–manganese alloys: particle-stimulated nucleation. Acta Mater. 2009;57(9):2739.CrossRef Robson JD, Henry DT, Davis B. Particle effects on recrystallization in magnesium–manganese alloys: particle-stimulated nucleation. Acta Mater. 2009;57(9):2739.CrossRef
[14]
Zurück zum Zitat Roven HJ, Liu M, Werenskiold JC. Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater Sci Eng A. 2008;483–484(15):54.CrossRef Roven HJ, Liu M, Werenskiold JC. Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater Sci Eng A. 2008;483–484(15):54.CrossRef
[15]
Zurück zum Zitat Troeger LP, Starke EA Jr. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater Sci Eng A. 2000;277(1):102.CrossRef Troeger LP, Starke EA Jr. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater Sci Eng A. 2000;277(1):102.CrossRef
[16]
Zurück zum Zitat Troger LP, Starke EA Jr. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy. Mater Sci Eng A. 2000;293(1–2):19.CrossRef Troger LP, Starke EA Jr. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy. Mater Sci Eng A. 2000;293(1–2):19.CrossRef
[17]
Zurück zum Zitat Ye LY, Zhang XM, Du YX, Luo ZH. Particle-stimulated nucleation of recrystallization for grain-size control in 01420 Al–Li alloy. Mater Sci Forum. 2007;546–549:889.CrossRef Ye LY, Zhang XM, Du YX, Luo ZH. Particle-stimulated nucleation of recrystallization for grain-size control in 01420 Al–Li alloy. Mater Sci Forum. 2007;546–549:889.CrossRef
[18]
Zurück zum Zitat Habiby F, Humphreys FJ. The effect of particle stimulated nucleation on the recrystallization texture of an Al–Si alloy. Scr Metall Mater. 1994;30(6):787.CrossRef Habiby F, Humphreys FJ. The effect of particle stimulated nucleation on the recrystallization texture of an Al–Si alloy. Scr Metall Mater. 1994;30(6):787.CrossRef
[19]
Zurück zum Zitat Abae A, Bethencourt M, Botana FJ, Cano MJ, Marcos M. Localized alkaline corrosion of alloy AA5083 in neutral 3.5 % NaCl solution. Corros Sci. 2001;43(9):1657.CrossRef Abae A, Bethencourt M, Botana FJ, Cano MJ, Marcos M. Localized alkaline corrosion of alloy AA5083 in neutral 3.5 % NaCl solution. Corros Sci. 2001;43(9):1657.CrossRef
[20]
Zurück zum Zitat Jafarzadeh K, Shahrabi T, Hadavi SMM, Hosseini MG. Role of chloride ion and dissolved oxygen in electrochemical corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solutions under flow conditions. J Mater Sci Technol. 2007;23(5):623. Jafarzadeh K, Shahrabi T, Hadavi SMM, Hosseini MG. Role of chloride ion and dissolved oxygen in electrochemical corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solutions under flow conditions. J Mater Sci Technol. 2007;23(5):623.
[21]
Zurück zum Zitat Arrabal R, Mingo B, Pardo A, Mohedano M, Matykina E, Rodríguez I. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt% NaCl solution. Corros Sci. 2013;73:342.CrossRef Arrabal R, Mingo B, Pardo A, Mohedano M, Matykina E, Rodríguez I. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt% NaCl solution. Corros Sci. 2013;73:342.CrossRef
[22]
Zurück zum Zitat Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS. Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta. 2007;52(52):765. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS. Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta. 2007;52(52):765.
[23]
Zurück zum Zitat Jiang H, Ye L, Zhang X, Gu G, Zhang P, Wu Y. Intermetallic phase evolution of 5059 aluminum alloy during homogenization. T Nonferr Metal Soc. 2013;23:3553.CrossRef Jiang H, Ye L, Zhang X, Gu G, Zhang P, Wu Y. Intermetallic phase evolution of 5059 aluminum alloy during homogenization. T Nonferr Metal Soc. 2013;23:3553.CrossRef
[24]
Zurück zum Zitat Goswami R, Spanos G, Pao PS, Holtz RL. Precipitation behavior of the β phase in Al-5083. Mater Sci Eng A. 2010;527(4–5):1089.CrossRef Goswami R, Spanos G, Pao PS, Holtz RL. Precipitation behavior of the β phase in Al-5083. Mater Sci Eng A. 2010;527(4–5):1089.CrossRef
[25]
Zurück zum Zitat Li J, Liu WC, Zhai T, Kenik EA. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys. Scr Mater. 2005;52(3):163.CrossRef Li J, Liu WC, Zhai T, Kenik EA. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys. Scr Mater. 2005;52(3):163.CrossRef
[26]
Zurück zum Zitat Vetrano JS, Bruemmer SM, Pawlowski LM, Robertson IM. Influence of the particle size on recrystallization and grain growth in Al–Mg–X alloys. Mater Sci Eng A. 1997;238(1):101.CrossRef Vetrano JS, Bruemmer SM, Pawlowski LM, Robertson IM. Influence of the particle size on recrystallization and grain growth in Al–Mg–X alloys. Mater Sci Eng A. 1997;238(1):101.CrossRef
[27]
Zurück zum Zitat Bennett TA, Petrov RH, Kestens LAI, Zhuang LZ, De Smet P. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy. Scr Mater. 2010;63(5):461.CrossRef Bennett TA, Petrov RH, Kestens LAI, Zhuang LZ, De Smet P. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy. Scr Mater. 2010;63(5):461.CrossRef
[28]
Zurück zum Zitat Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000;283(1–2):274.CrossRef Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000;283(1–2):274.CrossRef
[29]
Zurück zum Zitat Lin CY, Lui TS, Chen LH. A study of microstructural stability of friction stir welded joints. In: Proceedings of Light Metals, TMS Annual Meeting. Orlando; 2012. 527. Lin CY, Lui TS, Chen LH. A study of microstructural stability of friction stir welded joints. In: Proceedings of Light Metals, TMS Annual Meeting. Orlando; 2012. 527.
[30]
Zurück zum Zitat Jamshidi AH, Serajzadeh S, Kokabi AH. Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Mater Sci Eng A. 2011;528(28):8071.CrossRef Jamshidi AH, Serajzadeh S, Kokabi AH. Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Mater Sci Eng A. 2011;528(28):8071.CrossRef
[31]
Zurück zum Zitat Yamamoto N, Takahashi M, Ikeuchi K, Aritoshi M. Interfacial layer in friction-bonded joint of low carbon steel to Al–Mg alloy (AA5083) and its influence on bond strength. Mater Trans. 2004;45(2):296.CrossRef Yamamoto N, Takahashi M, Ikeuchi K, Aritoshi M. Interfacial layer in friction-bonded joint of low carbon steel to Al–Mg alloy (AA5083) and its influence on bond strength. Mater Trans. 2004;45(2):296.CrossRef
[32]
Zurück zum Zitat Zhou C, Yang X, Luan G. Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy. Mater Chem Phys. 2006;98(2–3):285.CrossRef Zhou C, Yang X, Luan G. Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy. Mater Chem Phys. 2006;98(2–3):285.CrossRef
[33]
Zurück zum Zitat Chen DL, Chaturvedi MC. Effects of welding and weld heat-affected zone simulation on the microstructure and mechanical behavior of a 2195 aluminum–lithium alloy. Metall Mater Trans A. 2001;32(11):2729.CrossRef Chen DL, Chaturvedi MC. Effects of welding and weld heat-affected zone simulation on the microstructure and mechanical behavior of a 2195 aluminum–lithium alloy. Metall Mater Trans A. 2001;32(11):2729.CrossRef
[34]
Zurück zum Zitat Kaibyshev R, Musin F, Avtokratova E, Motohashi Y. Deformation behavior of a modified 5083 aluminum alloy. Mater Sci Eng A. 2005;392(1–2):373.CrossRef Kaibyshev R, Musin F, Avtokratova E, Motohashi Y. Deformation behavior of a modified 5083 aluminum alloy. Mater Sci Eng A. 2005;392(1–2):373.CrossRef
[35]
Zurück zum Zitat Yuan Y. Localised corrosion and stress corrosion cracking of aluminum magnesium alloys. Britan: University of Birmingham; 2006. 34. Yuan Y. Localised corrosion and stress corrosion cracking of aluminum magnesium alloys. Britan: University of Birmingham; 2006. 34.
[36]
Zurück zum Zitat Searles JL, Gouma PI, Buchheit RG. Stress corrosion cracking of sensitized AA5083 (Al–4.5 Mg–1.0 Mn). Metall Mater Trans A. 2001;32(11):2859.CrossRef Searles JL, Gouma PI, Buchheit RG. Stress corrosion cracking of sensitized AA5083 (Al–4.5 Mg–1.0 Mn). Metall Mater Trans A. 2001;32(11):2859.CrossRef
[37]
Zurück zum Zitat Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminum alloys. J Electrochem Soc. 2005;152(4):140.CrossRef Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminum alloys. J Electrochem Soc. 2005;152(4):140.CrossRef
[38]
Zurück zum Zitat Lyndon JA, Gupta RK, Gibson MA, Birbilis N. Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys. Corros Sci. 2013;70:290.CrossRef Lyndon JA, Gupta RK, Gibson MA, Birbilis N. Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys. Corros Sci. 2013;70:290.CrossRef
[39]
Zurück zum Zitat Zhan G. Effect of stabilizing annealing temperature and processing on microstructure and properties of 383 aluminum alloy. Changsha: Central South University; 2013. 45. Zhan G. Effect of stabilizing annealing temperature and processing on microstructure and properties of 383 aluminum alloy. Changsha: Central South University; 2013. 45.
Metadaten
Titel
Microstructure characterization in a sensitized Al–Mg–Mn–Zn alloy
verfasst von
Chun-Yan Meng
Di Zhang
Ping-Ping Liu
Lin-Zhong Zhuang
Ji-Shan Zhang
Publikationsdatum
19.12.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0665-4

Weitere Artikel der Ausgabe 2/2018

Rare Metals 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.