Skip to main content
Erschienen in:

28.03.2023 | Technical Article

Microstructure Evolution and Mechanical Properties of Inconel 625 Foils

verfasst von: Fangjun Wang, Haiding Liu, Jia Li, Hong Wan, Lichuan Yu, Binbin Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure evolution and mechanical properties of cold-rolled Inconel 625 foil with thickness of 50 μm were investigated. After annealing at 650 and 700 °C, the cold-rolled microstructure transformed into smaller recrystallization grain and annealing twins, while the fraction and particle size of MC carbides increased with increasing aging temperature and duration. TEM analysis confirms the precipitation of irregular lens and near spherical-shaped \(\gamma^{\prime \prime }\) phase at 700 °C, which is not observed in the sample annealed at 650 °C. The foil after annealing at 650 °C for 48 h exhibits the best mechanical properties with ultimate tensile strength and yield strength of 1515 and 1077 MPa as well as reasonable elongation of 19.5%. But the much larger and coarser carbides result in obvious reduction in tensile properties for the sample after 48 h-aging at 700 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13, p 4–23.CrossRef T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13, p 4–23.CrossRef
2.
Zurück zum Zitat E. Salama, M.M. Eissa, and A.S. Tageldin, Distinct Properties of Tungsten Austenitic Stainless Alloy as A Potential Nuclear Engineering Material, Nucl. Eng., 2019, 51, p 784–791.CrossRef E. Salama, M.M. Eissa, and A.S. Tageldin, Distinct Properties of Tungsten Austenitic Stainless Alloy as A Potential Nuclear Engineering Material, Nucl. Eng., 2019, 51, p 784–791.CrossRef
3.
Zurück zum Zitat G.D. Han, Z.P. Lu, X.K. Ru, J.J. Chen, Q. Xiao, and Y.W. Tian, Improving The Oxidation Resistance of 316L Stainless Steel In Simulated Pressurized Water Reactor Primary Water by Electropolishing Treatment, J. Nucl. Mater., 2015, 467, p 194–204.CrossRef G.D. Han, Z.P. Lu, X.K. Ru, J.J. Chen, Q. Xiao, and Y.W. Tian, Improving The Oxidation Resistance of 316L Stainless Steel In Simulated Pressurized Water Reactor Primary Water by Electropolishing Treatment, J. Nucl. Mater., 2015, 467, p 194–204.CrossRef
4.
Zurück zum Zitat Q.B. He, F.S. Pan, D.Z. Wang, H.D. Liu, F. Guo, Z.W. Wang, and Y.L. Ma, Microstructure and Properties of 316L Stainless Steel Foils for Pressure Sensor of Pressurized Water Reactor, Nucl. Eng. Tech., 2021, 53, p 172–177.CrossRef Q.B. He, F.S. Pan, D.Z. Wang, H.D. Liu, F. Guo, Z.W. Wang, and Y.L. Ma, Microstructure and Properties of 316L Stainless Steel Foils for Pressure Sensor of Pressurized Water Reactor, Nucl. Eng. Tech., 2021, 53, p 172–177.CrossRef
5.
Zurück zum Zitat C.V. Yıldırım, T. Kıvakb, M. Sarıkayac, and Ş Şirin, Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-based Alloy 625 under MQL, Cryogenic Cooling and CryoMQL, J. Mater. Res. Technol., 2020, 9, p 2079–2092.CrossRef C.V. Yıldırım, T. Kıvakb, M. Sarıkayac, and Ş Şirin, Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-based Alloy 625 under MQL, Cryogenic Cooling and CryoMQL, J. Mater. Res. Technol., 2020, 9, p 2079–2092.CrossRef
6.
Zurück zum Zitat Y.B. Gao, Y.T. Ding, J.J. Chen, J.Y. Xu, Y.J. Ma, and X.M. Wang, Effect of Twin Boundaries on The Microstructure and Mechanical Properties of Inconel 625 Alloy, Mater. Sci. Eng. A, 2019, 767, p 702–710.CrossRef Y.B. Gao, Y.T. Ding, J.J. Chen, J.Y. Xu, Y.J. Ma, and X.M. Wang, Effect of Twin Boundaries on The Microstructure and Mechanical Properties of Inconel 625 Alloy, Mater. Sci. Eng. A, 2019, 767, p 702–710.CrossRef
7.
Zurück zum Zitat K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104.CrossRef K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104.CrossRef
8.
Zurück zum Zitat A.K. Jena and M.C. Chaturvedi, The Role of Alloying Elements in The Design of Nickel- base Superalloys, J. Mater. Sci., 1984, 19, p 3121–3139.CrossRef A.K. Jena and M.C. Chaturvedi, The Role of Alloying Elements in The Design of Nickel- base Superalloys, J. Mater. Sci., 1984, 19, p 3121–3139.CrossRef
9.
Zurück zum Zitat L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo, Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process, Metall. Mater. Trans. A, 2014, 45, p 2963–2982.CrossRef L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo, Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process, Metall. Mater. Trans. A, 2014, 45, p 2963–2982.CrossRef
10.
Zurück zum Zitat M.D. Mathew, P. Parameswaran, and K.B.S. Rao, Microstructural Changes in Alloy 625 During High Temperature Creep, Mater. Charact., 2008, 59, p 508–513.CrossRef M.D. Mathew, P. Parameswaran, and K.B.S. Rao, Microstructural Changes in Alloy 625 During High Temperature Creep, Mater. Charact., 2008, 59, p 508–513.CrossRef
11.
Zurück zum Zitat F. Cortial, J.M. Corrieu, and C. Vernot-Loier, Influence of Heat Treatments on Microstructure, Mechanical Properties, and Corrosion Resistance of Weld Alloy 625, Metall. Mater. Trans. A, 1995, 26, p 1273–1286.CrossRef F. Cortial, J.M. Corrieu, and C. Vernot-Loier, Influence of Heat Treatments on Microstructure, Mechanical Properties, and Corrosion Resistance of Weld Alloy 625, Metall. Mater. Trans. A, 1995, 26, p 1273–1286.CrossRef
12.
Zurück zum Zitat C. Thomas and P. Tait, The Performance of Alloy 625 in Long-term Intermediate Temperature Applications, Int. J. Press. Vessels Piping, 1994, 59, p 41–49.CrossRef C. Thomas and P. Tait, The Performance of Alloy 625 in Long-term Intermediate Temperature Applications, Int. J. Press. Vessels Piping, 1994, 59, p 41–49.CrossRef
13.
Zurück zum Zitat J. Mittra, S. Banerjee, R. Tewari, and G.K. Dey, Fracture Behavior of Alloy 625 with Different Precipitate Microstructures, Mater. Sci. Eng. A, 2013, 574, p 86–93.CrossRef J. Mittra, S. Banerjee, R. Tewari, and G.K. Dey, Fracture Behavior of Alloy 625 with Different Precipitate Microstructures, Mater. Sci. Eng. A, 2013, 574, p 86–93.CrossRef
14.
Zurück zum Zitat S. Floreen, G.E. Fuch, W.J. Yang, and E.A. Loria, ed., Superalloys 718, 625, 706 and various derivatives, TMS, Warrendale, 1994, PA, p 13–37 S. Floreen, G.E. Fuch, W.J. Yang, and E.A. Loria, ed., Superalloys 718, 625, 706 and various derivatives, TMS, Warrendale, 1994, PA, p 13–37
15.
Zurück zum Zitat N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto, Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750 °C, Mater. Sci. Eng. A, 2008, 498, p 412–420.CrossRef N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto, Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750 °C, Mater. Sci. Eng. A, 2008, 498, p 412–420.CrossRef
16.
Zurück zum Zitat P. Kontis, A. Kostkaa, D. Raabe, and B. Gault, Influence of Composition and Precipitation Evolution on Damage at Grain Boundaries in A Crept Polycrystalline Ni- based Superalloy, Acta Mater., 2019, 166, p 158–167.CrossRef P. Kontis, A. Kostkaa, D. Raabe, and B. Gault, Influence of Composition and Precipitation Evolution on Damage at Grain Boundaries in A Crept Polycrystalline Ni- based Superalloy, Acta Mater., 2019, 166, p 158–167.CrossRef
17.
Zurück zum Zitat X.D. Liu, J.K. Fan, P.Z. Zhang, J. Xie, F.L. Chen, D.G. Liu, R.H. Yuan, B. Tang, H.C. Kou, and J.S. Li, Temperature Dependence of Deformation Behavior, Microstructure Evolution and Fracture Mechanism of Inconel 625 Superalloy, J. Alloys Compd., 2021, 869, p 159342.CrossRef X.D. Liu, J.K. Fan, P.Z. Zhang, J. Xie, F.L. Chen, D.G. Liu, R.H. Yuan, B. Tang, H.C. Kou, and J.S. Li, Temperature Dependence of Deformation Behavior, Microstructure Evolution and Fracture Mechanism of Inconel 625 Superalloy, J. Alloys Compd., 2021, 869, p 159342.CrossRef
18.
Zurück zum Zitat D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705.CrossRef D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705.CrossRef
19.
Zurück zum Zitat M.D. Mathew, K.B.S. Rao, and S.L. Mannan, Creep Properties of Service-Exposed Alloy 625 after Resolution Annealing Treatment, Mater. Sci. Eng. A, 2004, 372, p 327–333.CrossRef M.D. Mathew, K.B.S. Rao, and S.L. Mannan, Creep Properties of Service-Exposed Alloy 625 after Resolution Annealing Treatment, Mater. Sci. Eng. A, 2004, 372, p 327–333.CrossRef
20.
Zurück zum Zitat S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K.B.S. Rao, and B. Raj, Characterization of Microstructures in Inconel 625 Using X-ray Diffraction Peak Broadening and Lattice Parameter Measurements, Scr. Mater., 2004, 51, p 59–63.CrossRef S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K.B.S. Rao, and B. Raj, Characterization of Microstructures in Inconel 625 Using X-ray Diffraction Peak Broadening and Lattice Parameter Measurements, Scr. Mater., 2004, 51, p 59–63.CrossRef
21.
Zurück zum Zitat M. Sundararaman, L. Kumar, G.E. Prasad, P. Mukhopadhyay, and S. Banerjee, Precipitation of an Intermetallic Phase with Pt2Mo-type Structure in Alloy 625, Metall. Mater. Trans. A, 1999, 30, p 41–52.CrossRef M. Sundararaman, L. Kumar, G.E. Prasad, P. Mukhopadhyay, and S. Banerjee, Precipitation of an Intermetallic Phase with Pt2Mo-type Structure in Alloy 625, Metall. Mater. Trans. A, 1999, 30, p 41–52.CrossRef
22.
Zurück zum Zitat J. Huebner, D. Kata, J. Kusiński, P. Rutkowski, and J. Lis, Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application, Ceram. Int., 2017, 43, p 8677–8684.CrossRef J. Huebner, D. Kata, J. Kusiński, P. Rutkowski, and J. Lis, Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application, Ceram. Int., 2017, 43, p 8677–8684.CrossRef
23.
Zurück zum Zitat Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik, Injection Molding of Nickel based 625 Superalloy: Sintering, Heat treatment, Microstructure and Mechanical Properties, J. Alloys Compd., 2013, 546, p 192–207.CrossRef Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik, Injection Molding of Nickel based 625 Superalloy: Sintering, Heat treatment, Microstructure and Mechanical Properties, J. Alloys Compd., 2013, 546, p 192–207.CrossRef
24.
Zurück zum Zitat L.M. Suave: M.Sc. Dissertation, ISAE-ENSMA, 2012 L.M. Suave: M.Sc. Dissertation, ISAE-ENSMA, 2012
25.
Zurück zum Zitat M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, p 405–417 (1994) M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, p 405–417 (1994)
26.
Zurück zum Zitat J. Mittra, J.S. Dubey, U.D. Kulkarni, and G.K. Dey, Role of Dislocation Density in Raising the Stage II Work-Hardening Rate of Alloy 625, Mater. Sci. Eng. A, 2009, 512, p 87–91.CrossRef J. Mittra, J.S. Dubey, U.D. Kulkarni, and G.K. Dey, Role of Dislocation Density in Raising the Stage II Work-Hardening Rate of Alloy 625, Mater. Sci. Eng. A, 2009, 512, p 87–91.CrossRef
27.
Zurück zum Zitat J. Mittra, J.S. Dubey, and S. Banerjee, Acoustic Emission Technique Used for Detecting Early Stages of Precipitation during Aging of Inconel 625, Scr. Mater., 2003, 49, p 1209–1214.CrossRef J. Mittra, J.S. Dubey, and S. Banerjee, Acoustic Emission Technique Used for Detecting Early Stages of Precipitation during Aging of Inconel 625, Scr. Mater., 2003, 49, p 1209–1214.CrossRef
28.
Zurück zum Zitat R. Rodriguez, R.W. Hayes, P.B. Berbon, and E.J. Lavernia, Tensile and Creep Behavior of Cryomilled Inco 625, Acta Mater., 2003, 51, p 911–929.CrossRef R. Rodriguez, R.W. Hayes, P.B. Berbon, and E.J. Lavernia, Tensile and Creep Behavior of Cryomilled Inco 625, Acta Mater., 2003, 51, p 911–929.CrossRef
29.
Zurück zum Zitat P. Kontis, D.M. Collins, S. Johansson, A.J. Wilkinson, J.J. Moverare, and R.C. Reed, Crack initiation and propagation during thermal-mechanical fatigue of IN792: effects of dwell time. in 13th International Symposium on Superalloys, SUPERALLOYS 2016, (pp. 763-772). (2016) P. Kontis, D.M. Collins, S. Johansson, A.J. Wilkinson, J.J. Moverare, and R.C. Reed, Crack initiation and propagation during thermal-mechanical fatigue of IN792: effects of dwell time. in 13th International Symposium on Superalloys, SUPERALLOYS 2016, (pp. 763-772). (2016)
Metadaten
Titel
Microstructure Evolution and Mechanical Properties of Inconel 625 Foils
verfasst von
Fangjun Wang
Haiding Liu
Jia Li
Hong Wan
Lichuan Yu
Binbin Liu
Publikationsdatum
28.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 14/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08114-x

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.